• 제목/요약/키워드: Crack Orientation

검색결과 154건 처리시간 0.024초

균열을 갖는 직사각형 진동평판의 음향 방사특성 (Sound Radiation Characteristics of A Cracked Rectangular Vibrating Plate)

  • 김태진;박종환;이우식
    • 한국철도학회논문집
    • /
    • 제6권3호
    • /
    • pp.163-168
    • /
    • 2003
  • This paper considers the sound radiation characteristics of a cracked rectangular vibrating plate, varying the orientation angle of a line crack. The vibration response of the cracked vibrating plate is obtained by using ANSYS, the acoustic theory based on the lumped parameter model is used to calculate radiated sound power. The radiated sound powers are computed with varying the orientation angle of the crack: i.e, 0$^{\circ}$, 45$^{\circ}$, and 90$^{\circ}$. It is found that characteristics of the radiated sound power are very closely related to the crack orientation, vibration mode and crack location.

평직 CFRP 복합재료의 균열진전 및 AE평가에 미치는 하중방향 영향 (The Effect of Load Orientation for Crack Propagation and Acoustic Emission Evaluation on Plain Woven CFRP)

  • 권오헌;윤유성
    • 대한기계학회논문집A
    • /
    • 제28권4호
    • /
    • pp.443-452
    • /
    • 2004
  • In recent year, composite materials are increasingly used in various fields of engineering because of its superior properties. The relationships of between crack propagation and AE characteristics fer CFRP plain woven laminate composites are examined. AE signals are measured during the fracture behavior tests. The purpose of study is to estimate the crack extension behavior with AE characteristics according to the load orientation fur plain woven CFRP laminate composite.

An investigation into the effects of voids, inclusions and minor cracks on major crack propagation by using XFEM

  • Jiang, Shouyan;Du, Chengbin;Gu, Chongshi
    • Structural Engineering and Mechanics
    • /
    • 제49권5호
    • /
    • pp.597-618
    • /
    • 2014
  • For the structures containing multiple discontinuities (voids, inclusions, and cracks), the simulation technologies in the framework of extended finite element method (XFEM) are discussed in details. The level set method is used for representing the location of inner discontinuous interfaces so that the mesh does not need to align with these discontinuities. Several illustrations have been given to verify that the implemented XFEM program is effective. Then, the implemented XFEM program is used to investigate the effects of the voids, inclusions, and minor cracks on the path of major crack propagation. For a plate containing cracks and voids, two possibly crack path can be observed: i) the crack propagates into the void; ii) the crack initially curves towards the void, then, the crack reorients itself and propagates along its original orientation. For a plate with a soft inclusion, the final predicted crack paths tend to close with the inclusion, and an evident difference of crack paths can be observed with different inclusion material properties. However, for a plate with a hard inclusion, the paths tend to away from the inclusion, and a slightly difference of crack paths can only be seen with different inclusion material properties. For a plate with several minor cracks, the trend of crack paths can still be described as that the crack initially curves towards these minor cracks, and then, the crack reorients itself and propagates almost horizontally along its original orientation.

The effect of the spinning conditions on the structure of mesophase pitch-based carbon fibers by Taguchi method

  • Jiang, Zhao;Ouyang, Ting;Yao, Xiangdong;Fei, Youqing
    • Carbon letters
    • /
    • 제19권
    • /
    • pp.89-98
    • /
    • 2016
  • Taguchi’s experimental design was employed in the melt spinning of molten mesophase pitch to produce carbon fibers. The textures of the obtained carbon fibers were radial with varied crack angles, as observed by scanning electron microscopy and polarized optical imaging. The diameter, crack angle, preferred orientation, and tensile modulus of the produced samples were examined to investigate the influence of four spinning variables. The relative importance of the variables has been emphasized for each characteristic. The results show that thicker carbon fiber can be obtained with a smaller entry angle, a higher spinning temperature, a reduced winding speed, and an increased extrusion pressure. The winding speed was found to be the most significant factor in relation to the fiber diameter. While it was observed that thicker carbon fiber generally shows improved preferred orientation, the most important variable affecting the preferred orientation was found to be the entry angle. As the entry angle decreased from 120° to 60°, the shear flow was enhanced to induce more ordered radial alignment of crystallite planes so as to obtain carbon fibers with a higher degree of preferred orientation. As a consequence, the crack angle was increased, and the tensile modulus was improved.

영광원자력 배관소재의 재료물성치 평가 (II) -안전주입계통- (Evaluation of Material Properties for Yonggwang Nuclear Piping Systems(II) - Safety Injection System-)

  • 김영진;석창성;장윤석
    • 대한기계학회논문집
    • /
    • 제19권6호
    • /
    • pp.1451-1459
    • /
    • 1995
  • The objective of this paper is to evaluate the material properties of SA312 TP316 and SA312 TP304 stainless steels and their associated welds manufactured for safety injection system of Yonggwang 3,4 nuclear generating stations. A total of 62 tensile tests and 46 fracture toughness tests were conducted and the effects of various parameters such as pipe size, crack plane orientation, tests were conducted and the effects of various parameters such as pipe size, crack plane orientation, test temperature, welding on material properties were discussed. Test results show that the effect of test temperature on fracture toughness was significant while the effects of pipe size and crack plane orientation on fracture toughness were negligible. Fracture toughness of the weld metal was in general higher than that of the base metal.

마찰교반용접된 Al7075-T651 용접부의 피로균열전파 거동에 미치는 시험편 채취방향의 영향 (Effect of Specimen Orientation on Fatigue Crack Growth Behavior in Friction Stir Welded Al7075-T651 Joints)

  • 정의한;김선진
    • 대한기계학회논문집A
    • /
    • 제38권12호
    • /
    • pp.1317-1323
    • /
    • 2014
  • 본 연구의 목적은 마찰교반용접된 Al7075-T651의 피로균열전파 거동에 미치는 시험편의 채취방향의 영향을 고찰하기 위한 것이다. 피로균열전파 실험은 마찰교반용접된 공시재로부터 모재와 용접재에 대하여 CT 시험편을 채취하여 일정응력확대계수범위 제어하에서 수행되었다. 균열이 용접선에 수직하여 전파하는 것(TL 시험편으로 명명)과 균열이 용접선과 나란히 전파하는 시험편(LT 시험편으로 명명)에 대하여 3가지 다른 응력확대계수범위에서 실험이 수행되었다. 시험편의 채취 방향에 따라 피로균열전파거동에 주요한 영향을 미침을 알 수 있었다. Paris 법칙에 적합시킨 결과 지수 m값은 WM-LT 시험편이 3.56으로 가장 높게 나타났다.

마그네슘 금속복합재의 피로균열거동해석 (Fatigue Crack Growth Behavior of a Magnesium-Based Composite)

  • 김두환;박용걸;김성훈;한석규
    • 한국강구조학회 논문집
    • /
    • 제9권4호통권33호
    • /
    • pp.515-521
    • /
    • 1997
  • 마그네슘 금속 복합재의 열처리 및 섬유 강화재 방향에 따른 효과를 파악하기 위하여 인장강도 및 피로해석이 연구되었다. TEM 관측에 따라 시편은 섬유 강화재와 마그네슘 복합기지 사이의 시효 열처리된 변형된 계면이다. 인장실험 결과로부터 시효 처리된 시편의 극한 인장강도는 주조상태의 시편보다 시효 처리시 화학반응에 의한 섬유 강화재-기지간의 접합강도 약화로 감소하였다. 피로균열 거동실험은 균열거동 방향이 섬유 강화재 방향과 수직인 시편과 균열거동 방향이 섬유 강화재 방향과 평행한 시편을 실험하였다. 피로균열 거동해석을 비교해보면 섬유 강화재와 하중방향이 수직인 시효처리된 시편의 경우가 주조상태의 시편보다 피로균열 거동에 더 크게 저항하였다. 반대로 섬유 강화재 방향에 평행한 주조상태의 시편은 섬유 강화재 방향에 평행한 시효처리된 시편보다 피로 균열거동에 더 크게 저항함을 알 수 있었다.

  • PDF

CED에 의한 계면굴절균열의 진전거동 (An Extension Behavior of an Interface Kinked Crack by CED)

  • 권오헌
    • 한국안전학회지
    • /
    • 제11권2호
    • /
    • pp.9-15
    • /
    • 1996
  • The characteristics on the extension of the CED(Crack energy density) concept to the interface kinked crack problems in a dissimilar material are examined. Each mode contributions of CED are found by symmetric and antisymmetric components and domain independent integrals. Finite element calculation is carried out to simulate the Interface kinked crack growth on bimaterial. The focus is the establishment of fracture criterion with CED and finding the orientation of crack extension. From the results, a prediction about the extension behavior of an interface kinked crack can be done. And we show that CED can be a parameter to indicate fracture criterion at an Interface kinked crack.

  • PDF

섬유의 적층 각도에 따른 섬유 금속 적층판의 압입 손상 거동 (Stacking Sequence Effects on Indentation Damage Behaviors of Fiber Metal Laminate)

  • 한경섭;남현욱;정성욱
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.960-968
    • /
    • 2002
  • In this research, the effects of fiber stacking sequence on damage behaviors of FML(Fiber Metal Laminates) subject to indentation loading. SOP (Singly Oriented Ply) FML and angle ply FML were fabricated to study fiber orientation effects and angle ply effects. FML were fabricated by using 1050 aluminum laminate and carbon/epoxy prepreg. To increase adhesive bonding strength, Al laminate was etched using FPL methods. The static indentation test were conducted by using UTM under the 2side clamped conditions. During the tests, load and displacement curve and crack initiation and propagation behaviors were investigated. As fiber orientation angle increases, the crack initiation load of SOP FML increases because the stiffness induced by fiber orientation is increased. The penetration load of SOP FML is influenced by the deformation tendency and boundary conditions. However, the macro-crack of angle ply FML was initiated by fiber breakage of lower ply because angle plies in Angle ply FML prevents the crack growth and consolidation. The Angle ply FML has a critical cross-angle which prevent crack growth and consolidation. Damage behavior of Angle ply FML is changed around the critical cross-angle.

Numerical analysis of interface crack problem in composite plates jointed with composite patch

  • Cetisli, Fatih;Kaman, Mete O.
    • Steel and Composite Structures
    • /
    • 제16권2호
    • /
    • pp.203-220
    • /
    • 2014
  • Stress intensity factors are numerically investigated for interfacial edge crack between two dissimilar composite plates jointed with single side composite patch. Variation of stress intensity factor under Mode I loading condition is examined for different material models and fiber orientation angles of composite plates and patch. ANSYS 12.1 finite element analysis software is used to obtain displacements of crack surfaces in the numerical solution and repaired plates are modeled in three dimensions. Obtained results are presented in the form of graphs. It is found that fiber orientation angle of composites is an effective parameter on interfacial stress intensity factor.