• Title/Summary/Keyword: Crack Opening

Search Result 451, Processing Time 0.024 seconds

Study on technique development for the solidified body of rock waste and evaluation of fracture toughness (암석폐재의 고화체 합성기술의 개발과 파괴인성평가에 관한 연구)

  • Na, Eui-Gyun;Yu, Hyosun;Kim, Jin-Yong;Lee, Jeong-Gee;Chung, Se-Hi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1452-1461
    • /
    • 1997
  • The hot press apparatus to obtain the solidified rocks with 60mm of diameter against rock waste was developed, and the optimum conditions for solidification were founded out, of which were 300.deg. C of temperature and 1hr of holding time. The solidified rocks reinforced with the fibers (carbon, steel) were made by means of a hydrothermal hot press method. Fracture toughness of those was obtained using the round compact tension(RCT) specimens. Load and displacement behaviours of the solidified rocks reinforced with the fibers were dependent upon the fiber volume fraction and kind of the fibers. Strength and fracture energy of the solidified rocks with steel were much larger than those of the solidified ones with carbon because of the Bridge's effect, multiple cracking and crack branching phenomena.

Damage Evaluation of Wheel Tread for High Speed Train Using Replication and Fracture Mechanics Characteristics (비파괴적 표면조직검사법과 파괴역학 특성에 따른 고속철도용 차륜 답면의 손상 평가)

  • Kwon, Seok-Jin;Lee, Dong-Hyung;Seo, Jung-Won;Kwon, Sung-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.756-763
    • /
    • 2007
  • The majority of catastrophic wheel failures are caused by surface opening fatigue cracks either in the wheel tread or wheel flange areas. The inclined cracks at railway wheel tread are initiated and the cracks are caused by wheel damage-spatting after 60,000 km running. Because the failured railway wheel is reprofiled before regular wheel reprofiling, the maintenance cost for the railway wheel is increased. Therefore, it is necessary to analyze the mechanism for initiation of crack. In the present paper, the combined effect on railway wheels of a periodically varying contact pressure and an intermittent thermal braking loading is investigated. To analyze damage cause for railway wheels, the measurements for replication of wheel surface and the effect of braking application in field test are carried out. The result shows that the damages in railway wheel tread are due to combination of thermal loading and ratcheting.

Application of Enhanced Reference Stress Method to Nuclear Piping LBB Analysis under Combined Tension and Bending (복합하중이 작용하는 원자력 배관의 파단전누설 해석을 위한 개선된 참조응력법의 수치해석적 검증)

  • Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.67-73
    • /
    • 2001
  • Three dimensional, elastic-plastic finite element(FE) analyses for circumferential through-wall cracked pipes under combined tension and bending are performed using actual tensile data of stainless steel, for two purposes. The first one is to validate the recently-proposed enhanced reference stress (ERS) method to estimate the J-integral and COD for circumferential through-wall cracked pipes under combined tension and bending. The second one is to compare those results with the GE/EPRI estimations. The FE results of the J-integral and the COD, resulting from six cases of proportional and non-proportional combined tension and bending, compare very well with those estimated from the proposed method. Excellent agreements of the proposed method with the detailed FE results provide sufficient confidence in the use of the proposed method to the Leak-Before-Break(LBB) analysis of through-wall cracked pipes under combined tension and bending.

  • PDF

Determination of double-K fracture parameters of concrete using split-tension cube test

  • Kumar, Shailendra;Pandey, S.R.
    • Computers and Concrete
    • /
    • v.9 no.2
    • /
    • pp.81-97
    • /
    • 2012
  • This paper presents development of double-K fracture model for the split-tension cube specimen for determining the unstable fracture toughness and initial cracking toughness of concrete. There are some advantages of using of split-tension cube test like compactness and lightness over the existing specimen geometries in practice such as three-point bend test, wedge splitting test and compact tension specimen. The cohesive toughness of the material is determined using weight function having four terms for the split-tension cube specimen. Some empirical relations are also suggested for determining geometrical factors in order to calculate stress intensity factor and crack mouth opening displacement for the same specimen. The results of double-K fracture parameters of split-tension cube specimen are compared with those obtained for compact tension specimen. Finally, the influence of the width of the load-distribution of split-tension cube specimen on the double-K fracture parameters for laboratory size specimens is investigated. The input data required for determining double-K fracture parameters for both the specimen geometries are obtained using well known version of the Fictitious Crack Model.

Nonlinear Finite Element Analysis of Reinforced Concrete Planar Members Using Rotating Orthotropic Axes Model (이방향성 회전 직교축 모델을 이용한 철근콘크리트 면부재의 비선형 유한요소해석)

  • 박홍근
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.117-127
    • /
    • 1995
  • The objective of this research is to investigate the effectiveness of rotating orthotropic axes model in analyzing reinforced concrete planar members under cyclic as well as monotonic loading. The structural members to be addressed are moderately reinforced beams, columns, beam-column joints, and shear walls, whose failure occurs due to compressive crushing after extensive crack propagation, The rotating orthotropic axes model which is usually used for monotonic loading is developed for cyclic loading. With the existing cyclic material models of reinforcing steel and bond-slip, this material model is used for the finite element analysis. For monotonic loading, the analytical results of the rotating orthotropic axes model are compared with reinforced concrete beams which have brittle failure. For Shear wall members under cyclic loading, the analyses are compared with the experiments for the ultimate load capacity, nonlinear deformation, and pinching effect due to crack opening and closing.

  • PDF

Meso-Scale Approach for Prediction of Mechanical Property and Degradation of Concrete

  • Ueda, Tamon
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.87-97
    • /
    • 2004
  • This paper presents a new approach with meso scale structure models to express mechanical property, such as stress - strain relationships, of concrete. This approach is successful to represent both uniaxial tension and uniaxial compression stress - strain relationship, which is in macro scale. The meso scale approach is also applied to predict degraded mechanical properties of frost-damaged concrete. The degradation of mechanical properties with frost-damaged concrete was carefully observed. Strength and stiffness in both tension and compression decrease with freezing and thawing cycles (FTC), while stress-free crack opening in tension softening increases. First attempt shows that the numerical simulation can express the experimentally observed degradation by introducing changes in the meso scale structure in concrete, which are assumed based on observed damages in the concrete subjected to FTC. At the end applicability of the meso scale approach to prediction of the degradation by combined effects of salt attack and FTC is discussed. It is shown that clarification of effects of frost damage in concrete on corrosion progress and on crack development in the damaged cover concrete due to corrosion is one of the issues for which the meso scale approach is useful.

On Relevant Ramberg-Osgood Fit to Engineering Non-Linear Fracture Mechanics Analysis (정확한 비선형 파괴역학 해석을 위한 새로운 Ramberg-Osgood 상수 결정법)

  • Kim, Yun-Jae;Huh, Nam-Su;Kim, Young-Jin;Choi, Young-Hwan;Yang, Jun-Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.170-177
    • /
    • 2003
  • This paper proposes a robust method for the Ramberg-Osgood (R-O) fit to accurately estimate elastic-plastic J from engineering fracture mechanics analysis based on deformation plasticity. The proposal is based on engineering stress-strain data to determine the R-O parameters, instead of true stress-strain data. Moreover, for practical applications, the method is given not only for the case when full stress-strain data are available but also for the case when only yield and tensile strengths are available. Reliability of the proposed method for the R-O fit is validated against detailed 3-D Finite Element (FE) analyses for circumferential through-wall cracked pipes under global bending using five different materials, three stainless steels and two ferritic steels. Taking the FE J results based on incremental plasticity using actual stress-strain data as reference, the FE J results based on deformation plasticity using various R-O fits are compared with reference J values. Comparisons show that the proposed R-O fit provides more accurate J values for all cases, compared to existing methods for the R-O fit. Advantages of the proposed R-O fit in practical applications are discussed, together with its accuracy.

  • PDF

Personal computer-based fatigue testing automation and improvements in fatigue behavior monitoring (퍼스널 컴퓨터에 의한 疲勞試驗自動化 및 疲勞擧動 測定의 精密化)

  • 박준래;송지호;엄윤용;김정엽;강기주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.123-130
    • /
    • 1988
  • Two kinds of 16bit-personal computer-based fatigue testing automation and monitoring system were constructed; one is Single-System utilizing a personal computer, the other si Dual-System consisting of two personal computers. The system developed in this study permits to perform multi-step programmed loading and pseudo-random loading fatigue tests, three parameters such as load, total displacement and subtracted displacement can be measured simultaneously. For improvements in measurements of fatigue behavior, two kinds of signal noise reduction software was developed. In addition, a software was also designed to automatically measure the crack opening point and crack length using the unloading elastic compliance technique.

Analysis of Crack Pattern of Very-Early Strength Latex-Modified Concrete (초속경 라텍스개질 콘크리트의 균열발생 특징분석)

  • Lee, Bong-Hak;Choi, Pan-GiI
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.103-110
    • /
    • 2007
  • Concrete is a material that will crack during its service life by its very nature. For bridge decks this is especially significant as these cracks allow accelerated ingress of chlorides and the subsequent corrosion of the reinforcing steel and deck deterioration. Very-early strength latex-modified concrete (below ; VES-LMC) was developed in order to realize early-opening-to-traffic bridge deck concrete. Although there has been little research to document the degree of cracking in VES-LMC overlay, there has been a general perception among highway agencies that overlay cracking of VES-LMC, particularly early-age cracking, is a one of problems which should be solved. The purpose of this study was to analyze the cause of map, transverse and longitudinal cracking in VES-LMC and to provide a control methods for minimizing the occurrence of cracks. The proposed prevention against map and transverse cracking was verified by field applications. VES cement was modified, the unit cement contents was reduced into $360kg/m^3$ from $390kg/m^3$, the maximum size of coarse aggregate was increase into 19mm from 13mm, wire mesh and steel fibers were incorporated in concrete mixture.

  • PDF

Cohesive Interface Model on Concrete Materials

  • Rhee In-Kyu;Roh Young-Sook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1053-1064
    • /
    • 2005
  • The mechanical damage of concrete is normally attributed to the formation of microcracks and their propagation and coalescence into macroscopic cracks. This physical degradation is caused from progressive and hierarchical damage of the microstructure due to debonding and slip along bimaterial interfaces at the mesoscale. Their growth and coalescence leads to initiation of hairline discrete cracks at the mesoscale. Eventually, single or multiple major discrete cracks develop at the macroscale. In this paper, from this conceptual model of mechanical damage in concrete, the computational efforts were made in order to characterize physical cracks and how to quantify the damage of concrete materials within the laws of thermodynamics with the aid of interface element in traditional finite element methodology. One dimensional effective traction/jump constitutive interface law is introduced in order to accommodate the normal opening and tangential slips on the interfaces between different materials(adhesion) or similar materials(cohesion) in two and three dimensional problems. Mode I failure and mixed mode failure of various geometries and boundary conditions are discussed in the sense of crack propagation and their spent of fracture energy under monotonic displacement control.