• Title/Summary/Keyword: Crack Modeling

Search Result 279, Processing Time 0.025 seconds

Fatigue Life Prediction of Tire Belt Edge (타이어 벨트 끝단의 피로수명 예측)

  • 김재연;양영수;김기운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.954-957
    • /
    • 2004
  • Tire belt durability is characterized by the initiation of a crack at the belt edge region, and the propagation of the crack until the ply is separated. Experimental methods have been used to analysis of the belt durability in the cord-reinforced rubber composite tires, but it takes much cost and time to make experiments. In this paper, a finite element method to analyze the fatigue life of a crack at the belt edge of tires is presented. The fatigue life is analyzed by using a three-dimensional Finite Element Modeling. This method includes a global-local finite element analysis to provide the detail necessary to model explicitly an internal crack and use of the J-integral for energy release rate evaluation.

  • PDF

Development of Analytical Simulation Model for Fatigue Crack Propagation : Crack Closure Behavior Modeling (균열개폐구 거동을 고려한 피로균열전파 해석 모델의 개발 : 균열 개폐구 거동의 모형화)

  • C.W. Kim;I.S. Nho;H.H. Van;B.C. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.74-83
    • /
    • 2001
  • After the concept of fracture mechanics was applied to fatigue crack propagation by Paris. Paris' law is widely used to predict fatigue crack growth behavior. Since Elber proposed the effective stress intensity factor(SIF) and showed a good agreement with experimental results using the proposed SIF, emphasis in crack propagation studies has been placed on measuring the effective stress range ratio. This paper proposes a numerical model to simulate the crack closure and propagation behaviour under various loading spectrum. The validity of the proposed model is checked by comparing with the Toyosada numerical solutions on the crack propagation behaviour. Important insights developed are summarized.

  • PDF

Crack mapping in RC members using distributed coaxial cable crack sensors: modeling and application

  • Greene, Gary Jr.;Belarbi, Abdeldjelil;Chen, Genda
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.385-404
    • /
    • 2005
  • The paper presents a model to calculate reinforcement strain using measured crack width in members under applied tension, flexure, and/or shear stress. Crack mapping using a new type of distributed coaxial cable sensors for health monitoring of large-scale civil engineering infrastructure was recently proposed and developed by the authors. This paper shows the results and performance of such sensors mounted on near surface of two flexural beams and a large scale reinforced concrete box girder that was subjected to cyclic combined shear and torsion. The main objectives of this health monitoring study was to correlate the sensor's response to strain in the member, and show that magnitude of the signal's reflection coefficient is related to increases in applied load, repeated cycles, cracking, and reinforcement yielding. The effect of multiple adjacent cracks, and signal loss was also investigated. The results shown in this paper are an important step in using the sensors for crack mapping and determining reinforcement strain for in-situ structures.

Evaluation of Ct-parameter for Weld Interface Crack Considering Material Plastic Behavior (재료의 소성 거동을 고려한 용접 계면균열의 Ct 매개변수)

  • Yun, Gi-Bong;Lee, Jin-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.676-684
    • /
    • 2000
  • In this study, behavior of $C_t$ which is a well-known fracture parameter characterizing creep crack growth rate, is investigated for weld interface cracks. Finite element analyses were per formed for a C(T) specimen under constant loading condition for elastic-plastic-creeping materials. In modeling C(T) geometry, an interface was employed along the crack plane which simulated the interface between weld and base metals. The $C_t$ versus time relations were obtained under various creep constant combinations and plastic constant combinations for weld and base metals, respectively. A unified $C_t$ versus time curve is obtained by normalizing $C_t$ with $C^*$ and t with $t_T$ for all the cases of material constant variations.

Numerical Analysis of Residual Stress Redistribution due to Fatigue Crack Propagation of Weld Zone (용접부의 균열진전에 따른 잔류응력 재분포 해석)

  • 이동형;구병춘
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.225-231
    • /
    • 2002
  • The problem of welding stresses and fatigue behavior is the main concerns of welding research fields. The residual stresses and distortion of structures by welding is exert negative effect on the safety of mechanical structures. That is, expansion of material by high temperature and distortion by cooling during welding process is caused of tensile and compressive residual stresses on welding material, and this residual stresses reduce fracture and fatigue strength of welding structures. The accurate prediction of residual stress and redistribution due to fatigue crack propagation of weld zone is very important to improve the quality of weldment. In this study, a finite element modeling technique is developed to simulate the redistribution of residual stresses due to fatigue crack propagation of weld zone.

  • PDF

Validation of 3D crack propagation in plain concrete -Part II: Computational modeling and predictions of the PCT3D test

  • Gasser, T.Christian
    • Computers and Concrete
    • /
    • v.4 no.1
    • /
    • pp.67-82
    • /
    • 2007
  • The discrete crack-concept is applied to study the 3D propagation of tensile-dominated failure in plain concrete. To this end the Partition of Unity Finite Element Method (PUFEM) is utilized and the strong discontinuity approach is followed. A consistent linearized implementation of the PUFEM is combined with a predictor-corrector algorithm to track the crack path, which leads to a robust numerical description of concrete cracking. The proposed concept is applied to study concrete failure during the PCT3D test and the predicted numerical results are compared to experimental data. The proposed numerical concept provides a clear interface for constitutive models and allows an investigation of their impact on concrete cracking under 3D conditions, which is of significant scientific interests to interpret results from 3D experiments.

Study of the fracture behavior of different structures by the extended finite element method (X-FEM)

  • Zagane Mohammed El Sallah;Moulgada Abdelmadjid;Sahli Abderahmane;Baltach Abdelghani;Benouis Ali
    • Advances in materials Research
    • /
    • v.12 no.4
    • /
    • pp.273-286
    • /
    • 2023
  • The fracture mechanics make it possible to characterize the behavior with cracking of structures using parameters quantifiable in the sense of the engineer, in particular the stress field, the size of the crack, and the resistance to cracking of the material. Any structure contains defects, whether they were introduced during the production of the part (machining or molding defects for example). The aim of this work is to determine numerically by the finite element method the stress concentration factor Kt of a plate subjected to a tensile loading containing a lateral form defect with different sizes: a semicircle of different radii, a notch with different opening angles and a crack of different lengths. The crack propagation is then determined using the extended finite element technique (X-FEM). The modeling was carried out using the ABAQUS calculation code.

Stress Fields Along Semi-Elliptical Interfacial Crack Front with Yield-Strength-Mismatch (항복강도 불일치 반타원 계면균열 선단에서의 응력장)

  • Choi, Ho-Seung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.126-137
    • /
    • 2003
  • Many research works have been performed on the J-T approach for elastic-plastic crack-tip stress fields in a variety of plane strain specimens. To generalize the validity of J-T method, further investigations are however needed fur more practical 3D structures than the idealized plane strain specimens. The present study deals mainly with 3D finite element (FE) modeling of welded plate and straight pipe, and accompanying elastic, elastic-plastic FE analyses. Manual 3D modeling is almost prohibitive, since the models contain semi-elliptical interfacial cracks which require singular elements. To overcome this kind of barrier, we develop a program generating the meshes fur semi-elliptical interfacial cracks. We then compare the detailed 3D FE stress fields to those predicted with J-T two parameters. The validity of J-T approach is thereby extended to 3D yield-strength-mismatched weld joints, and useful information is inferred fur the design or assessment of pipe welds.

J-T Characterization of Stress Fields Along 3D Semi-Elliptical Interfacial Crack Front (J-T에 의한 3차원 반타원 계면균열선단 응력장의 기술)

  • Choi, Ho-Seung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1250-1261
    • /
    • 2002
  • Many research works have validated the J-T approach to elastic-plastic crack-tip stress fields in a variety of plane strain specimens. To generalize the validity of J-T method, further investigations are however needed for more practical 3D structures than the idealized plane strain specimens. In this work, we perform 3D finite element (FE) modeling of welded plate and straight pipe, and accompanying elastic, elastic-plastic FE analyses. Manual 3D modeling is almost prohibitive, since the models contain semi-elliptical interfacial cracks which require singular elements. To overcome this kind of barrier, we develop a program generating the meshes for semi-elliptical interfacial cracks. We then compare the detailed 3D FE stress fields to those predicted with J-T two parameters. Thereby we extend the validity of J-T application to 3D structures and infer some useful informations for the design or assessment of pipe welds.

Computer modeling of crack propagation in concrete retaining walls: A case study

  • Azarafza, Mehdi;Feizi-Derakhshi, Mohammad-Reza;Azarafza, Mohammad
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.509-514
    • /
    • 2017
  • Concrete retaining walls are the most common types of geotechnical structures for controlling instable slopes resulting from lateral pressure. In analytical stability, calculation of the concrete retaining walls is regarded as a rigid mass when its safety is required. When cracks in these structures are created, the stability may be enforced and causes to defeat. Therefore, identification, creation and propagation of cracks are among the important steps in control of lacks and stabilization. Using the numerical methods for simulation of crack propagation in concrete retaining walls bodies are among the new aspects of geotechnical analysis. Among the considered analytical methods in geotechnical appraisal, the boundary element method (BEM) for simulation of crack propagation in concrete retaining walls is very convenient. Considered concrete retaining wall of this paper is Pars Power Plant structured in south side in Assalouyeh, SW of Iran. This wall's type is RW6 with 11 m height and 440 m length and endurance of refinery construction lateral forces. To evaluate displacement and stress distributions (${\sigma}_{1,max}/{\sigma}_{3,min}$), the surrounding, especially in tip and its opening crack BEM, is considered an appropriate method. By considering the result of this study, with accurate simulation of crack propagation, it is possible to determine the final status of progressive failure in concrete retaining walls and anticipate the suitable stabilization method.