• 제목/요약/키워드: Crack Instability

검색결과 79건 처리시간 0.034초

Rock failure assessment based on crack density and anisotropy index variations during triaxial loading tests

  • Panaghi, Kamran;Golshani, Aliakbar;Takemura, Takato
    • Geomechanics and Engineering
    • /
    • 제9권6호
    • /
    • pp.793-813
    • /
    • 2015
  • Characterization of discontinuous media is an endeavor that poses great challenge to engineers in practice. Since the inherent defects in cracked domains can substantially influence material resistance and govern its behavior, a lot of work is dedicated to efficiently model such effects. In order to overcome difficulties of material instability problems, one needs to comprehensively represent the geometry of cracks along with their impact on the mechanical properties of the intact material. In the present study, stress-strain results from laboratory experiments on Inada granite was used to derive crack tensor as a tool for the evaluation of fractured domain stability. It was found that the formulations proposed earlier could satisfactorily be employed to attain crack tensor via the invariants of which judgment on cracks population and induced anisotropy is possible. The earlier criteria based on crack tensor analyses were reviewed and compared to the results of the current study. It is concluded that the geometrical parameters calculated using mechanical properties could confidently be used to judge the anisotropy as well as strength of the cracked domain.

크랙을 가진 유체유동 파이프의 안정성 및 동특성 해석 (Stability and Dynamic Behavior of Cracked Pipe Conveying Fluid)

  • 윤한익;손인수;안성진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.703-708
    • /
    • 2006
  • In this paper a dynamic behavior(natural frequency) of a cracked simply supported pipe conveying fluid is presented. In addition, an analysis of the buckling instability of a cracked pipe conveying fluid subjected to a follower compressive load is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. TI1e crack is assumed to be in the first mode of fracture and to be always opened during the vibrations.

  • PDF

경사 종동력을 받는 티모센코 보의 안정성에 미치는 크랙의 영향 (Effects of Crack on Stability of Timoshenko Beams Subjected to Subtangential Follower Force)

  • 손인수;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제18권12호
    • /
    • pp.1327-1334
    • /
    • 2008
  • In this paper, the purpose is to investigate the stability of cracked Timoshenko cantilever beams subjected to subtangential follower force. In addition, an analysis of the instability(critical follower force of flutter and divergence) of a cracked beam as slenderness ratio and subtangential coefficient is investigated. The governing differential equations of a Timoshenko beam subjected to an end tangential follower force is derived via Hamilton's principle. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The results of this study will contribute to the safety test and stability estimation of structures of a cracked beam subjected to subtangential follower force.

Research Advances on Tension Buckling Behaviour of Aerospace Structures: A Review

  • Datta, Prosun Kumar;Biswas, Sauvik
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.1-15
    • /
    • 2011
  • This paper reviews most of the research done in the field of tensile buckling characteristics pertaining to aerospace structural elements with special attention to local buckling and parametric excitation due to periodic loading on plate and shell elements. The concepts of buckling in aerospace structures appear as the result of the application of a global compressive applied load or shear load. A less usual situation is the case, in which a global tensile stress creates buckling instability and the formation of complex spatial buckling pattern. In contrast to the case of a pure compression or shear load, here the applied macroscopic load has no compressive component and is thus globally stabilizing. The instability stems from a local compressive stress induced by the presence of a defect, such as a crack or a hole, due to partial or non-uniform applied load at the far end. This is referred to as tensile buckling. This paper discusses all aspects of tensile buckling, theoretical and experimental. Its far reaching applications causing local instability in aerospace structural components are discussed. The important effects on dynamic stability behaviour under locally induced periodic compression have been identified and influences of various parameters are discussed. Experimental results on simple and combination resonance characteristics on plate structures due to tensile buckling effects are elaborated.

Crack effect on the elastic buckling behavior of axially and eccentrically loaded columns

  • Zhou, L.;Huang, Y.
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.169-184
    • /
    • 2006
  • A close form solution of the maximum deflection for cracked columns with rectangular cross-sections was developed and thus the elastic buckling behavior and ultimate bearing capacity were studied analytically. First, taking into account the effect of the crack in the potential energy of elastic systems, a trigonometric series solution for the elastic deflection equation of an arbitrary crack position was derived by use of the Rayleigh-Ritz energy method and an analytical expression of the maximum deflection was obtained. By comparison with the rotational spring model (Okamura et al. 1969) and the equivalent stiffness method (Sinha et al. 2002), the advantages of the present solution are that there are few assumed conditions and the effect of axial compression on crack closure was considered. Second, based on the above solutions, the equilibrium paths of the elastic buckling were analytically described for cracked columns subjected to both axial and eccentric compressive load. Finally, as examples, the influence of crack depth, load eccentricity and column slenderness on the elastic buckling behavior was investigated in the case of a rectangular column with a single-edge crack. The relationship of the load capacity of the column with respect to crack depth and eccentricity or slenderness was also illustrated. The analytical and numerical results from the examples show that there are three kinds of collapse mechanisms for the various states of cracking, eccentricity and slenderness. These are the bifurcation for axial compression, the limit point instability for the condition of the deeper crack and lighter eccentricity and the fracture for higher eccentricity. As a result, the conception of critical transition eccentricity $(e/h)_c$, from limit-point buckling to fracture failure, was proposed and the critical values of $(e/h)_c$ were numerically determined for various eccentricities, crack depths and slenderness.

Characteristics of EMR emitted by coal and rock with prefabricated cracks under uniaxial compression

  • Song, Dazhao;You, Qiuju;Wang, Enyuan;Song, Xiaoyan;Li, Zhonghui;Qiu, Liming;Wang, Sida
    • Geomechanics and Engineering
    • /
    • 제19권1호
    • /
    • pp.49-60
    • /
    • 2019
  • Crack instability propagation during coal and rock mass failure is the main reason for electromagnetic radiation (EMR) generation. However, original cracks on coal and rock mass are hard to study, making it complex to reveal EMR laws and mechanisms. In this paper, we prefabricated cracks of different inclinations in coal and rock samples as the analogues of the native cracks, carried out uniaxial compression experiments using these coal and rock samples, explored, the effects of the prefabricated cracks on EMR laws, and verified these laws by measuring the surface potential signals. The results show that prefabricated cracks are the main factor leading to the failure of coal and rock samples. When the inclination between the prefabricated crack and axial stress is smaller, the wing cracks occur first from the two tips of the prefabricated crack and expand to shear cracks or coplanar secondary cracks whose advance directions are coplanar or nearly coplanar with the prefabricated crack's direction. The sample failure is mainly due to the composited tensile and shear destructions of the wing cracks. When the inclination becomes bigger, the wing cracks appear at the early stage, extend to the direction of the maximum principal stress, and eventually run through both ends of the sample, resulting in the sample's tensile failure. The effect of prefabricated cracks of different inclinations on electromagnetic (EM) signals is different. For samples with prefabricated cracks of smaller inclination, EMR is mainly generated due to the variable motion of free charges generated due to crushing, friction, and slippage between the crack walls. For samples with larger inclination, EMR is generated due to friction and slippage in between the crack walls as well as the charge separation caused by tensile extension at the cracks' tips before sample failure. These conclusions are further verified by the surface potential distribution during the loading process.

Modeling or rock slope stability and rockburst by the rock failure process analysis (RFPA) method

  • Tang, Chun'an;Tang, Shibin
    • 한국암반공학회:학술대회논문집
    • /
    • 한국암반공학회 2011년도 추계 총회 및 창립 30주년 기념 심포지엄
    • /
    • pp.89-97
    • /
    • 2011
  • Brittle failure of rock is a classical rock mechanics problem. Rock failure not only involves initiation and propagation of single crack, but also is a complex problem associated with initiation, propagation and coalescence of many cracks. As the most important feature of rock material properties is the heterogeneity, the Weibull statistical distribution is employed in the rock failure process analysis (RFPA) method to describe the heterogeneity in rock properties. In this paper, the applications of the RFPA method in geotechnical engineering and rockburst modeling are introduced with emphasis, which can provide some references for relevant researches.

  • PDF

해양구조물의 원통형 조인트에 대한 파괴역학적 피로수명 산출방법의 설정 (Establishment of Fracture Mechanics Fatigue Life Analysis Procedures for Offshore Tubular Joints -part II : Fatigue Life Analysis for a Multi-Plan Tubular Joint)

  • 이희종
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.87-100
    • /
    • 1989
  • 해양구조물의 원통형 조인트에 대한 파괴역학적 피로수명 산출방법이 개발되었다. 개발된 방법을 이용해서 2평면 K형 조인트에 대한 피로수명을 구체적인 파괴역학적 방법으로 산출 하였다. 이 분석을 위해 용접부위 표면균열의 응력확대 계수를 3차원 유한요소법에 의해 계산하였다. 계산된 결과에 의하면 용접부위 표면균열 첨단은 단순한 Mode I형태를 보이지 않고 Mode I, II, III이 복합된 형태임이 입증되었다. 계산된 응력확대 계수를 사용해서 16개의 용접부위균열 성장형태를 일반적인 피로균열 성장법칙을 적용해서 계산하였고, 균열성장의 안정분석을 통해 각 균열의 최종 파괴상태를 파괴해석도면(failure assessment diagram)법을 이용해서 계산하였다.

  • PDF

경사 종동력과 끝질량을 갖는 크랙 보의 안정성 해석 (Stability Analysis of Cracked Beams with Subtangential Follower Force and Tip Mass)

  • 손인수;윤한익;노태우
    • 대한기계학회논문집A
    • /
    • 제33권12호
    • /
    • pp.1410-1416
    • /
    • 2009
  • In this paper, the purpose is to investigate the stability and variation of natural frequency of a cracked cantilever beams subjected to follower force and tip mass. In addition, an analysis of the flutter instability(flutter critical follower force) of a cracked cantilever beam as slenderness ratio and crack severity is investigated. The governing differential equations of a Timoshenko beam subjected to an end tangential follower force is derived via Hamilton's principle. The two coupled governing differential equations are reduced to one fourth order ordinary differential equation in terms of the flexural displacement. Finally, the influence of the slenderness ratio and crack severity on the critical follower force, stability and the natural frequency of a beam are investigated.

증기발생기 전열관 확관천이부위 축방향 관통균열의 관막음 기준에 관한 연구 (Study on Plugging Criteria for Thru-wall Axial Crack in Roll Transition Zone of Steam Generator Tube)

  • 박명규;김영종;전장환;김종민;박준수
    • 대한기계학회논문집A
    • /
    • 제20권9호
    • /
    • pp.2894-2900
    • /
    • 1996
  • The stream generator tubes represent an integral part of a major barrier against the fission product release to the environment. So, the rupture of these tubes could permit flow of reactor coolant into the secondary system and injure the safety of reactor coolant system. Therefore, if the crack was detected during In-Service Inspection of tubes the cracked tube should be evaluated by the pulgging criteria and plugged or not. In this study, the fracture mechanics evaluation is carried out on the thru-wall axial crack due to Primary Water Stress Corrosion Cracking in the roll transition aone of steam generator tube to help the assurence the integrity of tubes and estabilish the plugging criteria. Due to the Inconel which is used as tube material is more ductile than others, the plastic instability repture theory was used to calculate the critical and allowable crack length. Based on Leak Before Break concept the leak rate for the critical crack length and the allowable leak rate are compared and the safety of tubes was given.