• Title/Summary/Keyword: Crack Examination

Search Result 104, Processing Time 0.046 seconds

HAZ Crack Growth Behavior of Cr-Mo Steel at Elevated Temperature (Cr-Mo강 용접열영향부에서의 고온 균열성장거동 연구)

  • 윤기봉;신규인;정용근;이해무
    • Proceedings of the KWS Conference
    • /
    • 1997.05a
    • /
    • pp.65-68
    • /
    • 1997
  • Fracture behavior of ex-serviced 1Cr-0.5Mo steel was measured at room(24$^{\circ}C$) and elevated(538$^{\circ}C$) temperature and compared with that measured with virgin 1Cr-0.5Mo steel. Compact C(T) specimens were machined from the base and welded test materials. In case of the C(T) specimens of the weld, fatigue precrack was introduced along the fusion line so that a crack growth should occur along the region of heat affected zone. It was observed that the J-R curve of the serviced material was significantly lower than that of the virgin material at room temperature. Brittle fracture was observed in the serviced material. On the other hand at elevated temperature no noticeable difference was found between the J-R curves of the virgin and the serviced material. The measured J-R curves were also compared with those of the 1.25Cr-0.5Mo steel from other literatures. Optical microscopy and SEM examination of the serviced material reveal the carbide in/along the grain boundary which shows material degradation due to long-term usage.

  • PDF

Microcapsules Containing Self-Healing Agent with Red Dye (빨간 색소를 함유한 자가치료제 마이크로캡슐)

  • Guang, Yang;Lee, Jong Keun
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.356-361
    • /
    • 2013
  • Microcapsules of two different self-healing agents, 5-ethylidene-2-norbornene (ENB) and ENB with a crosslinker, surrounded by a melamine-urea-formaldehyde shell were manufactured. In this work, a red dye was incorporated into the self-healing agents as a tracer for better visual observations. It revealed that the incorporation of a red dye into self-healing agents did not disturb the formation of microcapsules from the examination of thermal resistance, particle size/size distribution and morphology of the resulting microcapsules. Releasing of self-healing liquid into the induced crack from ruptured microcapsules and filling between crack planes were observed using an optical microscope. Also observed was the reaction of filled healing agent with embedded Grubbs' catalyst in an epoxy coating layer.

Integrity Evaluation and Root Cause Analysis of Cracks at the Volute Tongue of Centrifugal Pump (원심펌프 벌류트 혀의 균열 원인분석 및 건전성 평가)

  • Park, Chi-Yong;Kim, Jin-Weon;Kim, Yang-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.7-14
    • /
    • 2000
  • This paper provides integrity evaluation and root cause analysis for defects observed at volute tongue, or cutwater, of the operating centrifugal pump in power plant. The cause of the cracks are analyzed and reviewed from the viewpoint of the operation and maintenance of the pumps, and the sample obtained from the cracked volute tongue of the pump are examined. At first, in-situ hardness test and microstructure examination were performed to understand the cause of cracking at volute tongue. The evaluation of structural integrity and the possibility of the crack propagation is also evaluated. Cracks were typical intergranular cracking and propagated along with prior austenite grain boundary. At easing volute tongue, the hardness was higher than ASTM requirement and a large amount of intergranular Cr carbide was precipitated. These were due to high C content in material. P content was also higher than ASTM requirement. Therefore, Cr carbide precipitation and P segregation at grain boundary, caused by higher C and P content in material, resulted in intergranular cracking of casing volute tongue. This procedure for integrity evaluation and root cause analysis is used to guide, and support the pump designer and manufacturer's material selection and process design to avoid a costly, unplanned outage of plant.

  • PDF

Fracture Strength Measurement of Single Crystal Silicon Chips as a Function of Loading Rate during 3-Point Bending Test (3점 굴곡 실험에서 하중 속도 변화에 따른 단결정 실리콘 칩의 파괴강도 측정)

  • Lee, Dong-Ki;Lee, Seong-Min
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.146-151
    • /
    • 2012
  • The present article shows how the fracture strength of single crystal silicon chips, which are generally used as semiconductor devices, is influenced by loading rate variation during a 3-point bending test. It was found that the fracture strength of the silicon chips slightly increases up to 4% with increasing loading rate for loading rates lower than 20 mm/min. Meanwhile, the fracture strength of the chips hardly increases with increase of loading rate to levels higher than 40 mm/min. However, there was an abrupt transition in the fracture strength within a loading rate range of 20 mm/min to 40 mm/min. This work explains through microscopic examination of the fracture surface of all test chips that such a big transition is related to the deflection of crack propagation direction from the (011) [${\bar{1}}00$] system to the (111) [${\bar{2}}11$] system in a particular loading rate (i.e. from 20 mm/min to 40 mm/min).

Examination and Improvement of Accuracy of Three-Dimensional Elastic Crack Solutions Obtained Using Finite Element Alternating Method (유한요소 교호법으로 구한 삼차원 균열 탄성해의 정확성 향상 및 검토)

  • Park, Jai-Hak;Nikishkov, G.P.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.629-635
    • /
    • 2010
  • An SGBEM (symmetric Galerkin boundary element method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. This method can be used to obtain mixed-mode stress intensity factors for planar and nonplanar three-dimensional cracks having an arbitrary shape. For field applications, however, it is necessary to verify the accuracy and consistency of this method. Therefore, in this study, we investigate the effects of several factors on the accuracy of the stress intensity factors obtained using the abovementioned alternating method. The obtained stress intensity factors are compared with the known values provided in handbooks, especially in the case of internal and external circumferential semi-elliptical surface cracks. The results show that the SGBEM-FEM alternating method yields accurate stress intensity factors for three-dimensional cracks, including internal and external circumferential surface cracks and that the method can be used as a robust crack analysis tool for solving field problems.

New Fracture Toughness Test Method of Zircaloy-4 Nuclear Fuel Cladding (Zircaloy-4 핵연료 피복관의 신파괴인성 시험법)

  • Oh, Dong-Joon;Ahn, Sang-Bok;Hong, Kwon-Pyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.823-832
    • /
    • 2003
  • To define the causes of cladding degradation which can take place during the operation of nuclear power plants, it is required to develop the new fracture toughness test of spent fuel cladding. The fracture toughness of Zircaloy-4 cladding was estimated using the recently developed KAERI embedded Charpy (KEC) specimen. Axially notched KEC specimens cut directly from unirradiated fuel claddings, were tested in a way similar to the standard toughness test method of a Single Edge Bending (SEB) specimen. The results of KEC fracture toughness test at room temperatures were discussed and compared with those of the previous other studies. In conclusions, even though the KEC fracture toughness test of nuclear fuel claddings was easier and more reliable than those developed earlier, the results from the cladding fracture tests were not the material characteristics but the specific fracture parameters which were deeply related to the specification of claddings. In addition, the phenomenon of a thickness yielding was not observed from the fracture surface. It was closely related to the fact that the plane strain condition of the KEC specimen was changed to the plane stress condition during crack advancing. It was also supported by the fractographic evidence that the formation of ductile dimples at the crack initiation became the similar appearance such as a quasi-cleavage after the sufficient crack advancing.

Evaluation of the Surface Crack by a Large Aperture Ultrasonic Probe (대구경 초음파 탐촉자를 이용한 표면균열 평가)

  • Cho, Yong-Sang;Kim, Jae-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.180-185
    • /
    • 2004
  • Conventional ultrasonic examination to detect micro and small surface cracks is based on the pulse-echo technique using a normal immersion focused transducer with high frequency, or an angle-beam transducer generating surface waves. It is difficult to make an automatic ultrasonic system that can detect micro and small surface cracks and position in a large structure like steel and ceramic rolls, because of the huge data of inspection and the ambiguous position data of the transducer. In this study, a high-precision scanning acoustic microscope with a 10MHz large-aperture transducer has been used to assess the existence, position and depth of a surface crack from the real-time A, B, C scans obtained by exploiting the ultrasonic diffraction. The ultrasonic method with large aperture transducer has improved the accuracy of the crack depth assessment and also the scanning speed by ten times, compared with the conventional ultrasonic methods.

Influence of nano-silica on the failure mechanism of concrete specimens

  • Nazerigivi, Amin;Nejati, Hamid Reza;Ghazvinian, Abdolhadi;Najigivi, Alireza
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.429-434
    • /
    • 2017
  • Failure of basic structures material is usually accompanied by expansion of interior cracks due to stress concentration at the cracks tip. This phenomenon shows the importance of examination of the failure behavior of concrete structures. To this end, 4 types of mortar samples with different amounts of nano-silica (0%, 0.5%, 1%, and 1.5%) were made to prepare twelve $50{\times}50{\times}50mm$ cubic samples. The goal of this study was to describe the failure and micro-crack growth behavior of the cement mortars in presence of nano-silica particles and control mortars during different curing days. Failure of mortar samples under compressive strength were sensed with acoustic emission technique (AET) at different curing days. It was concluded that the addition of nano-silica particles could modify failure and micro-crack growth behavior of mortar samples. Also, monitoring of acoustic emission parameters exposed differences in failure behavior due to the addition of the nanoparticles. Mortar samples of nano-silica particles revealed stronger shear mode characteristics than those without nanoparticles, which revealed high acoustic activity due to heterogeneous matrix. It is worth mentioning that the highest compressive strength for 3 and 7 test ages obtained from samples with the addition of 1.5% nano-silica particles. On the other hand maximum compressive strength of 28 curing days obtained from samples with 1% combination of nano-silica particles.

Preliminary PINC(Program for the Inspection of Nickel Alloy Components) RRT(Round Robin Test) - Pressurizer Dissimilar Metal Weld -

  • Kim, Kyung-Cho;Kang, Sung-Sik;Shin, Ho-Sang;Chung, Ku-Kab;Song, Myung-Ho;Chung, Hae-Dong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.248-255
    • /
    • 2009
  • After several damages by PWSCC were found in the world, USNRC and PNNL(Pacific Northwest National Laboratory) started the research on PWSCC under the project name of PINC. The aim of the project was 1) to fabricate representative NDE mock-ups with flaws to simulate PWSCCs, 2) to identify and quantitatively assess NDE methods for accurately detecting, sizing and characterizing PWSCCs, 3) to document the range of locations and morphologies of PWSCCs and 4) to incorporate results with other results of ongoing PWSCC research programs, as appropriate. Korea nuclear industries have also been participating in the project. Thermally and mechanically cracked-four mockups were prepared and phased array and manual ultrasonic testing(UT) techniques were applied. The results and lessons learned from the preliminary RRT are summarized as follows: 1) Korea RRT teams performed the RRT successfully. 2) Crack detection probability of the participating organizations was an average 87%, 80% and 80% respectively. 3) RMS error of the crack sizing showed comparatively good results. 4) The lessons learned may be helpful to perform the PINC RRT and PSI /ISI in Korea in the future.

A Comprehensive Examination of Autogenous Shrinkage in Ultra-High-Strength Concrete augmented with Graphene and Hollow Glass Powder (그래핀과 유공유리분말을 사용한 초고강도 콘크리트의 자기수축에 관한 실험적 연구)

  • Seo, Tae-Seok;Lee, Hyun-Seung;Kim, Kang-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.547-558
    • /
    • 2023
  • This research delves into the fabrication of an ultra-high-strength concrete, enriched with oxidized graphene nanoplatelet(GO) and hollow glass powder(HGP), notably eschewing the conventional inclusion of silica fume(SF). The primary objective was to scrutinize the autogenous shrinkage characteristics of this innovative formulation. It was discerned that the NewMix specimen, which incorporated the cGO(sourced from Company C) and HGP, and intentionally bypassed SF, showcased a commendable 13% reduction in autogenous shrinkage relative to the benchmark(Ref) specimenthat incorporated SF. Moreover, the proclivity for crack formation owing to autogenous shrinkage in the NewMix was observed to manifested by NewMix at the juncture of cracking emerged as the apex value. Attributed to the expansive specific surface area and exemplary dispersibility of cGO, it was postulated that the concrete's pore structure benefitted from enhanced infill, leading to a reduction in autogenous shrinkage. Additionally, the cGO integration fortified the concrete's resistance to crack initiation. Consequently, such an enhancement is posied to be pivotal in mitigating crack propagation resulting from autogenous shrinkage in ultra-high-strength concrete.