• 제목/요약/키워드: Crack Coalescence

검색결과 77건 처리시간 0.024초

단축압축 하의 암석 브릿지에서의 균열 결합 (Crack Coalescence in Rock Bridges under Uniaxial Compression)

  • 박남수;전석원
    • 한국터널지하공간학회 논문집
    • /
    • 제3권2호
    • /
    • pp.23-32
    • /
    • 2001
  • 암석은 지질학적 생성과정으로 인해 많은 역학적 결함을 포함하고 있으며 이러한 결함 사이에는 암석 브릿지가 존재하게 된다. 이러한 암석 브릿지에서의 균열의 전파 및 결합(coalescence)과정은 터널의 안정성에 영향을 미치게 된다. 본 연구에서는 단축압축 하에서 균열의 형상변화에 따른 암석 브릿지에서의 균열의 개시, 전파 및 결합거동 변화를 강화석고의 일종인 Diastone과 여산 대리석 시료에 대해 알아보았다. 하중을 가하면서 날개형 균열 개시응력, 날개형 균열 전파각도, 균열결합 응력을 측정하였으며, 전단, 인장, 혼합형의 3가지 균열결합 유형이 나타났다. 또한, 정규화된 최대강도(normalized peak strength)를 구하여 Ashby & Hallam 모형(1986)의 이론해와 비교, 분석하였다.

  • PDF

단조증가 및 반복하중 하에서 모사 암석 시료의 균열 성장에 관한 실험적 연구 (An Experimental Study on Crack Growth in Rock-like Material under Monotinic and Cyclic Loading)

  • 고태영;이승철;김동근;최영태
    • 터널과지하공간
    • /
    • 제21권4호
    • /
    • pp.307-319
    • /
    • 2011
  • 교통, 굴착, 발파 등에 의한 반복하중은 오랜 시간에 걸쳐서 암석의 미세균열 성장을 일으키며, 암석의 강도 등에 영향을 미치기 때문에 반복하중에 의한 균열의 성장, 결합은 장시간 안정성 평가에 중요한 영향을 미친다. 본 연구에서는 두 개의 초기 균열을 가지는 모사 암석 시험편에 단조증가 및 반복하중을 가하여 하중 조건에 따른 균열의 성장과 결합유형을 조사하였다. 단조증가하중, 반복하중 시험 모두에서 서로 유사한 날개균열 시작 위치, 날개균열 각도, 균열 성장 순서, 균열 결합 형태가 관측되었다. 본 연구에서 관찰된 균열 결합은 크게 3종류로 전단에 의한 결합, 1개의 날개 혹은 인장 균열에 의한 결합 그리고 2개의 날개 혹은 인장 균열에 의한 결합으로 요약될 수 있다. 피로균열은 반복하중 시험에서만 발생하였으며 성장 방향은 이차균열과 유사하게 초기균열과 같은 방향 혹은 하중방향과 직교인 수평방향으로 관찰되었다.

단축압축 하에서 대리석의 균열전파 및 결합 (Crack Propagation and Coalescence in Yeosan Marble under Uniaxial Compression)

  • 박남수;전석원
    • 터널과지하공간
    • /
    • 제11권3호
    • /
    • pp.217-224
    • /
    • 2001
  • 암석은 지질학적 생성과정으로 인해 많은 역학적 결함을 포함하고 있으며 이러한 결함 사이에는 암석 브릿지가 존재하게 된다. 이러한 암석 브릿지에서의 균열의 전파 및 결합(coalescence)과정은 사면, 기초, 터널 등의 안정성에 영향을 미치게 된다. 본 연구에서는 단축압축 하에서 균열의 형상변화에 따른 암석 브릿지에서의 균열의 개시, 전파 및 결합거동 변화에 대해 알아보았다. 여산 대리석을 재료로 120$\times$60$\times$25 mm크기의 시료에 균열각도 $\alpha$, 브릿지각도 $\beta$, 균열길이 2c, 브릿지길이 2b를 변화시키면서 2개의 인공균열을 제작하였다. 하중을 가하면서 날개형 균열개시응력, 날개형 균열 전파각도, 균열결합 응력을 측정하였으며 균열결합 유형을 정리하였다. 또한, 정규화된 최대강도(normalized peak strength)를 구하여 Ashby & Hallam 모형 (1986)의 이론해와 비교, 분석 하였다.

  • PDF

균열의 합체를 고려한 피로균열 진전수명의 확률분포 (The Probability Distribution of Fatigue Crack Propagation Life Considering Effect of Crack Coalescence)

  • 방홍인;윤한용
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1281-1287
    • /
    • 2000
  • The studies of probability distribution of the fatigue crack growth life have been somewhat reported. But the study on the probability distribution of the fatigue crack growth life considering the crack coalescence for three dimensional surface fatigue crack has apparently not been reported to date. In this study, the computer program has been developed to predict the probability distribution of the fatigue crack growth life considering the crack coalescence. The effects of parameters for the distribution of the fatigue crack propagation life were evaluated by using the program.

길이가 다른 두 개의 축방향 관통균열이 동일선상에 존재하는 증기발생기 세관의 균열 합체 압력 (Coalescence Pressure of Steam Generator Tubes with Two Different-Sized Collinear Axial Through-Wall Clacks)

  • 허남수;장윤석;김영진
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1255-1260
    • /
    • 2006
  • To maintain the structural integrity of steam generator tubes, 40% of wall thickness plugging criterion has been developed. The approach is for the steam generator tube with single crack, so that the interaction effect of multiple cracks can not be considered. Although, recently, several approaches have been proposed to assess the integrity of steam generator tube with two identical cracks whilst actual multiple cracks reveal more complex shape. In this paper, the coalescence pressure of steam generator tube containing multiple cracks of different length is evaluated based on the detailed 3-dimensional (3-D) elastic-plastic finite element (FE) analyses. In terms of the crack shape, two collinear axial through-wall cracks with different length were considered. Furthermore, the resulting FE coalescence pressures are compared with FE coalescence pressures and experimental results for two identical collinear axial through-wall cracks to quantify the effect of crack length ratio on failure behavior of steam generator tube with multiple cracks. Finally, based on 3-D FE results, the coalescence evaluation diagrams were proposed.

Crack initiation and fragmentation processes in pre-cracked rock-like materials

  • Lee, Jooeun;Hong, Jung-Wuk
    • Geomechanics and Engineering
    • /
    • 제15권5호
    • /
    • pp.1047-1059
    • /
    • 2018
  • This paper focuses on the cracking and fragmentation process in rock materials containing a pair of non-parallel flaws, which are through the specimen thickness, under vertical compression. Several numerical experiments are conducted with varying flaw arrangements that affect the initiation and tensile wing cracks, shear crack growth, and crack coalescing behaviors. To obtain realistic numerical results, a parallelized peridynamics formulation coupled with a finite element method, which is able to capture arbitrarily occurring cracks, is employed. From previous studies, crack initiation and propagation of tensile wing cracks, horsetail cracks, and anti-wing cracks are well understood along with the coalescence between two parallel flaws. In this study, the coalescence behaviors, their fragmentation sequences, and the role of an x-shaped shear band in rock material containing two non-parallel flaws are discussed in detail on the basis of simulation results strongly correlated with previous experimental results. Firstly, crack initiation and propagation of tensile wing cracks and shear cracks between non-parallel flaws are investigated in time-history and then sequential coalescing behavior is analyzed. Secondly, under the effect of varying inclination angles of two non-parallel flaws and overlapping ratios between a pair of non-parallel flaws, the cracking patterns including crack coalescence, fragmentation, and x-shaped shear band are investigated. These numerical results, which are in good agreement with reported physical test results, are expected to provide insightful information of the fracture mechanism of rock with non-parallel flaws.

고온하 304 스테인리스철의 표면규열의 성장거동에 관한 실험적 연구 (An Experimental Study on the Growth Behavior of Multi-Surface-Cracks in Type 304 Stainless Steel at Elevated Temperature)

  • 서창민;신형섭;황남성;정대윤
    • 한국해양공학회지
    • /
    • 제9권1호
    • /
    • pp.63-72
    • /
    • 1995
  • The crack which is discovered in various structures and machine elements is multi-cracks. Multi-cracks may cause serious problems because they grow individually, and coalesce into one and it leads to fracture. Fatigue tests have been carried out to study the growth and coalescence behavior of multi-surface-cracks initiated at the semicircular surface notch in type 304 stainless steel at elevated temperature. The results are as follows; When multi-surface-cracks are lying on the surface of material, the major surface crack has greater influence on the fatigue life than the subcracks. The aspect ratio of multi-surface-cracks is lower than that of single crack because of the interaction and coalescence of surface cracks. Crack growth shape turns to semiellipse from the semicircle notch. After coalescence, the surface crack length increases rapidly, and it leads to fracture. Further, the slope transition of Paris law was found in the da/dN-$\Delta$K$_1$ plots.

  • PDF

복수 표면피로균열의 성장합체거동과 시뮬레이션에 관한 연구 (Fatigue Crack Growth, Coalescence Behavior and Its Simulation on Multi-Surface Cracks)

  • 서창민;황남성;박명규
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.716-728
    • /
    • 1994
  • In this paper, fatigue tests were carried out to study the behavior of growth and coalescence of multi-surface cracks which were initiated at the semi-circular surface notches, and a simulation program was developed to predict their growth and coalescence behavior. By comparing the experimental result with those of the simulation based on SPC(surface point connection), ASME and BSI(British Standards Institution) conditions, we tried to enhance the reliance and integrity of structures. This shows that the simulation result has utility for fatigue life prediction.

The coalescence and strength of rock-like materials containing two aligned X-type flaws under uniaxial compression

  • Zhang, Bo;Li, Shucai;Yang, Xueying;Xia, Kaiwen;Liu, Jiyang;Guo, Shuai;Wang, Shugang
    • Geomechanics and Engineering
    • /
    • 제17권1호
    • /
    • pp.47-56
    • /
    • 2019
  • Crossing (X-type) flaws are commonly encountered in rock mass. However, the crack coalescence and failure mechanisms of rock mass with X-type flaws remain unclear. In this study, we investigate the compressive failure process of rock-like specimens containing two X-type flaws aligned in the loading direction. For comparison purposes, compressive failure behavior of specimens containing two aligned single flaws is also studied. By examining the crack coalescence behavior, two characteristics for the aligned X-type flaws under uniaxial compression are revealed. The flaws tend to coalesce by cracks emanating from flaw tips along a potential path that is parallel to the maximum compressive stress direction. The flaws are more likely to coalesce along the coalescence path linked by flaw tips with greater maximum circumferential stress if there are several potential coalescence paths almost parallel to the maximum compressive stress direction. In addition, we find that some of the specimens containing two aligned X-type flaws exhibit higher strengths than that of the specimens containing two single parallel flaws. The two underlying reasons that may influence the strengths of specimens containing two aligned X-type flaws are the values of flaw tips maximum circumferential stresses and maximum shear stresses, as well as the shear crack propagation tendencies of some secondary flaws. The research reported here provides increased understanding of the fundamental nature of rock/rock-like material failure in uniaxial compression.

고온하 복수 표면균열의 성장 합체거동과 시뮬레이션에 관한 연구 (Fatigue Crack Growth, Coalescence Behavior and its Simulation on Multi-Surface Cracks Under the Elevated Temperature)

  • 서창민;황남성;윤기봉
    • 한국해양공학회지
    • /
    • 제9권1호
    • /
    • pp.142-151
    • /
    • 1995
  • A simulation program concerned with multi-surface fatigue cracks which initiated at the semi-circular surface notches has been developed to predict their growth and coalescence behaviors at the elevated temperature. Three kinds of coalescence models such as SPC(surface point connection), ASME and BSI(British Standards Institution) conditions were applied, and the results of the simulation were compared with those of the experiment. This simulation is able to enhance the reliance and integrity of structures especially under the elevated temperature which have lots of difficulties in experiments and applications. This shows that the simulation result has utility for fatigue life prediction. Even though all the specimens were the same shape, the error rate was increased in accordance with the applied stress to the specimen. Among the material constants C and m in the narrow band, the results applied upper values of the band to the simulation has shown quite small error compared with the experiment results.

  • PDF