• 제목/요약/키워드: Crack Closure Effective Stress Intensity Range

검색결과 30건 처리시간 0.026초

5083-0 알루미늄合金의 疲勞균열進展 擧動과 균열닫힘에 관한 硏究 (A study of Fatigue Crack Growth Behavior and Crack Closure in 5083-O Aluminum Alloy)

  • 박영조;김정규;김일현
    • 대한기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.208-214
    • /
    • 1986
  • 본 연구에서는 균열 닫힘에 관한 연구의 일환으로 5083-O 알루미늄합금을 사용하고 소규모강복조건하에서 일정진폭하중피로시험을 시행하여 이 재료의 피로균열 진전속도와 균열닫힘에 관하여 검토하였다.

2017 - T 3 알미늄 合金 의 勞龜裂進展 과 龜裂닫힘現象 (Fatigue crack growth and crack closure in 2017-T3 Aluminum alloy)

  • 송지호;김일현;신용승
    • 대한기계학회논문집
    • /
    • 제4권2호
    • /
    • pp.47-53
    • /
    • 1980
  • Kikukawa-Compliance method using a conventional clip-on gauge was employed to investigate fatigue crack growth and crack closure in 2017-T3 aluminum alloy. The crack growth rate plot against stress intensity range .DELTA.K on a log-log diagram exhibits a bilinear form with a transition at the growth rate of 10$\^$-4/ mm/cycle. The bilinear form appears still in the plot of growth rate versus effective stress intensity range .DELTA.K$\_$eff/. Fatigue crack growth rate could be well represented by .DELTA.K$\_$eff. The experimental results indicate that the effective stress intensity range ratio U depends on the maximum stress intensity factor K$\_$max/, but the stress ratio R does not affect U. The crack opening stress intensity factor K$\_$op/ tends to increase with increasing K$\_$max/ and decrease with increasing .DELTA.K.

5083-H113 알루미늄合金의 表面균열進展擧動과 균열닫힘 現象 (Surface crack propagation behavior and crack closure phenomena in 5083-H113 aluminum alloy)

  • 박영조;김정규;신용승;김영운
    • 대한기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.243-252
    • /
    • 1987
  • 본 논문에서는 작은 인공결함을 가진 표면균열의 진전거동을 밝히기 위하여 용접성이 좋고 강도도 적당하며 내식성이 좋아 해양구호무재 및 용접구호물재로서 널 리 사용되는 5083-H113 알루미늄합금을 준비하고 이재료의 피로표면균열 진전거동에 미치는 응력비의 영향을 균열닫힘과 함께 검토하였다.

피로균열개구거동을 이용한 짧은균열의 거동 분석 (Short Crack Analysis by Fatigue Crack Opening Behavior)

  • 송삼홍;이경로
    • 한국정밀공학회지
    • /
    • 제14권4호
    • /
    • pp.136-144
    • /
    • 1997
  • The characteristics of fatigue crack growth subject to out-of-plane bending fatigue are studied in terms of crack opening behavior by using pre-cracked smooth specimens. Crack opening stress is measured by an elastic compliance method which may precisely and continuously provide many date using strain gages during experiment. The results of the short crack and the long crack arranged by crack closure concept show that the effective stress gange ratio of short crack is grester than that of long crack, and ano- malous growth behavior of short crack may be elucidated by the variation of crack opening stress. When the variation of fatigue crack growth rate is arranged versus effective stress intensity factor range. Iinear relation is held also for the short crack. It shows that growth behavior of short crack can be quantitatively represent- ed by the fracture mechanics parameter using effective stress intensity factor range.

  • PDF

다층용접배관 용접부에서 균열닫힘현상을 고려한 피로균열성장특성 평가 (Evaluation of Fatigue Crack Growth Characteristics Considering Crack Closure Phenomenon in Weldment of Multi-Pass Welded Pipe)

  • 김철한;조선영;배동호
    • 대한기계학회논문집A
    • /
    • 제25권5호
    • /
    • pp.797-804
    • /
    • 2001
  • To obtain representative fatigue crack growth characteristic curve in residual stress field, fatigue crack growth test was carried out at various stress ratio and fatigue crack growth characteristic curve was represented using crack closure concept. Obtained results are as follows;K(sub)op/K(sub)max was independent of K(sub)max when R was lower than 0.5 and crack closure phenomenon was not observed when R is higher than 0.5. therefore neglecting crack closure behaviour, actual fatigue crack growth rate can be underestimated. Thus, considering crack closure phenomenon, fatigue crack growth characteristics curve of A 106 Gr B Steel weldment can be effectively estimated.

균열닫힘모델을 이용한 수치해석 (Numerical Analysis of Crack Growth Using a Crack Closure Model)

  • 최동호;최항용;이준구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.365-372
    • /
    • 2001
  • This study is concerned with the application of an analytical model of cyclic crack growth that includes the effects of crack closure. The crack closure model is based on the Dugdale model and the strip model, considering the plasticity-induced closure which is caused by residual plastic deformation remaining in the wake of an advancing crack. This study is performed to get the relation between crack growth and crack opening stress with the constant stress ratio, and the relation between stress ratio and crack opening stress with the constant maximum stress under constant-amplitude loading. Under constant-amplitude loading, the crack opening stress is conversed the constant value as a crack grows and is proportion to both the stress ratio and the maximum stress. The crack closure effect, however, is decreased in the positive stress ratio and disappeared at about 0.7. The crack growth analysis using the crack closure model shows that the influence of stress ratio is minimized in the relation between crack growth ratio and effective stress intensity range specially at the negative stress ratio.

  • PDF

탄소강의 피로균열 진전거동 평가에 관한 실험적 연구 (An Experimental on the Evalution of Fatigue Crack Propagation of Carbon Steel)

  • 김희송;안병욱
    • 대한기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.938-946
    • /
    • 1989
  • 본 연구에서는 CT시험편을 이용하여 소규모 항복조건하에서 하한계(near threshold)영역과 안전균열성장(제II)영역의 균열진전거동을 파악하고 피로균열 진전속도와 음향방출거동, 파단면 특성을 각각 비교, 고찰하여 각 파라미터간의 상관 관계 및 유용성을 검토하고자 한다.

굽힘하중의 받는 외팔보의 변동하중에 대한 균열진전 거동 (Crack Propagation Behavior for Variable Load in Cantilever Beam under Bending Load)

  • 김엽래
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.178-183
    • /
    • 1998
  • This paper examines the crack growth behavior of 7075-T651 and 5052-H32 aluminum alloys for variable load within tensile load range condition. The cantilever beam type specimen with a chevron notch is used in this study. The crack growth and closure are investgated by compliance method. The applied initial stress ratio is R=0.3 and variable load are R=0.65, 0.46. Crack length, stress intensity factor range, ratio of effective stress intensity factor range and crack growth rate etc. are inspected with fracture mechanics estimate.

  • PDF

AI7050-T7452 단조재의 피로균열성장에 대한 균열닫힘의 영향 (Effect of Crack Closure on the Fatigue Crack Growth Behavior of Forged AI7050-T7452)

  • Lee, W.S.;Park, J.Y.;Lee, H.W.
    • 한국정밀공학회지
    • /
    • 제14권7호
    • /
    • pp.82-90
    • /
    • 1997
  • When a structure is made by the process of forging, it has the different mechanical properties from those it has before the process. This study is based on the crack closure phenomenon of the crack growth behavior of forged AI7050-T7452. The specimens were prepared in three kinds of forging ratio in order to find out the effects of crack closure on the forged material and compare the crack growth behavior with not-forged aluminum. COD method and strain gage method were used in measuring the crack closure stress and the results from those methods were compared each other. FEM analysis was applied to verify the effective stress intensity factor range by the superposition of the crack closure load to the crack tip. In the result of this study, the crack closure stress decreased with increasing the forging ratio due to the finer grain size and the brittle manner.

  • PDF

균열닫힘현상을 고려한 피로균열전파식 (Fatigue Crack Growth Rate Equation by Crack Closure)

  • 김용수;강동명;신근하
    • 한국안전학회지
    • /
    • 제6권4호
    • /
    • pp.81-87
    • /
    • 1991
  • We propose the crack growth rate equation which will model fatigue crack growth rate behavior such that constant stress amplitude fatigue crack growth behavior can be predicted. Constant stress amplitude fatigue tests are conducted for four materials under three stress ratios of R=0.2, R=0.4 and R=0.6. Materials which have different mechanical properties i.e. stainless steel, low carbon steel, medium carbon steel and aluminum alloy are used. Through constant stress amplitude fatigue test by using unloading elastic compliance method, it is confirmed that crack closure is a close relationship with fatigue crack propagation. We describe simply fatigue crack propagation behavior as a function of the effective stress intensity factor range ($\Delta$ $K_{eff}$=U .$\Delta$K) for all three regions (threshold region, stable region). The fatigue crack growth rate equation is given by da / dN=A($\Delta$ $K_{eff}$­$\Delta$ $K_{o}$ )$^{m}$ / ($\Delta$ $K_{eff}$­$\Delta$K) Where, A and m are material constants, and $\Delta$ $K_{o}$ is stress intensity factor range at low $\Delta$K region. $K_{cf}$ is critical fatigue stress intensity factor.actor.

  • PDF