• 제목/요약/키워드: Crack Boundary Condition

검색결과 74건 처리시간 0.026초

초음파 탐상법을 이용한 접착이음에 대한 계면 균열의 검출 (Detection of Interface Crack Using Ultrasonic Method in Adhesively Bonded Joints)

  • 정남용;박성일;이명대
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.415-423
    • /
    • 2001
  • In is well recognized that the ultrasonic method is one of the most common and reliable nondestructive testing(NDT) methods for the quantitative estimation of defects in welded structures. However, NDT techniques applying for adhesively bonded joints have not been clearly established yet. In this paper, the detection of interface crack by the ultrasonic method was applied for the measurement of interface crack length in the adhesively bonded joints of double-cantilever beam(DCB). The optimum condition of transmission coefficients and experimental accuracy by the ultrasonic method in the adhesively bonded joints have been investigated. The experimental values are in good agreement with the computed results by boundary element method(BEM) and Riplings equation.

초음파 탐상법을 이용한 접착이음에 대한 계면균열의 검출 (Detection of Interface Crack Using Ultrasonic Method in Adhesively Bonded Joints)

  • 정남용;이명대;박성일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.97-102
    • /
    • 2000
  • It is well recognized that the ultrasonic methods is one of the most common and reliable nondestructive testing(NDT) methods for the quantitative estimation of defects in welded structures. However, NDT techniques applying for adhesively bonded joints have not been clearly established yet. In this paper, the detection of interface crack by the ultrasonic method was applied for the measurement of interfacial crack length in the adhesively bonded joints of double-cantilever beam(DCB). The optimum condition of transmission coefficients in the adhesively bonded joints and it's experimental accuracy by the ultrasonic method have been investigated. The experimental values are in good agreement with the computed results by boundary element method(BEM) and Ripling's equation.

  • PDF

이종 마찰용접재의 계면균열에 대한 파괴인성의 평가방법 (An Evaluation Method of Fracture Toughness on Interface Crack in Friction Welded Dissimilar Materials)

  • 정남용;박철희
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.171-177
    • /
    • 2007
  • In this paper, an evaluation method of fracture toughness on interface cracks was investigated in friction welded dissimilar materials with interfacial edge cracks. To establish a reasonable strength evaluation method and fracture criterion, it is necessary to analyze stress intensity factor under the load and residual stress condition on friction welded interface between dissimilar materials. The friction welded specimens with an edged crack were prepared for analysis of stress intensity by using the boundary element method (BEM) and the fracture toughness. A quantitative fracture criterion for friction welded STS 304/SM 45C with interface crack is suggested by using stress intensity factor, F and the results of fracture toughness experiment.

반무한 탄성체의 헤르츠 접촉하의 경사진 표면균열의 전파거동 (Propagation Behavior of Inclined Surface Crack of Semi-Infinite Elastic Body under Hertzian Contact)

  • 김재호;김석삼;박중한
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.624-635
    • /
    • 1990
  • 본 연구에서는 마멸과정을 선형파괴역학적 관점에서 해석하여, 탄성체의 표면 에 산재되어 있는 표면균열의 전파거동을 마멸과정규명의 입장에서 살펴보고자 한다. 우선 마멸거동에 관한 파괴역학적 접근방식에 의한 마멸이론의 확립을 위해서, 표면균 열이 내부균열보다 그 전파 가능성이 높다고 한 Keer등의 주장에 착안하여 Hertz 접촉 압력하의 경사진 표면균열의 전파거동을 선형파괴역학적으로 해석하고자 한다. 이론 해석에 있어서는 표면균열을 인상전립의 연속분포로 치환하고, 전립밀도분포함수에 관 한 특이적분방정식을 유도해서 Erdogangupta의 방법을 이용하여 그 해를 구하였다.

SS400 용접부의 표면피로균열거동에 관한 연구 (A study on surface fatigue crack behavior of SS400 weldment)

  • 이용복;조남익;박강은
    • Journal of Welding and Joining
    • /
    • 제14권2호
    • /
    • pp.90-95
    • /
    • 1996
  • In order to investigate characteristics of surface fatigue crack propagation from a pit shaped surface defect which frequently exists around welded joints, SS400 steel with thickness of 12mm, which has been generally used for structure members, was welded with submerged-arc butt type and machined for both surface. An initial surface defect of pit shape with the aspect ratio of 2 was made on the specimen. The initial defect was located at 5 different zones over the weldment : weld metal zone, boundary between weld metal and HAZ, HAZ, boundary between HAZ and base metal. Characteristics of surface fatigue crack propagation from the defect on each region under the same loading condition were investigated and compared.

  • PDF

SS400용접 부위의 표면 피로균열거동에 관한 연구 (A study on surface fatigue crack behavior of SS400 welding Zone)

  • 이용복;조남익;박강은
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1995년도 특별강연 및 추계학술발표 개요집
    • /
    • pp.214-217
    • /
    • 1995
  • In order to investigate characteristics of surface fatigue crack propagation from a pit shaped surface defect which frequently exists near weld joints, SS400 steel with thickness of 12mm, which generally used for structure members, was submerged-arc welded with butt type and machined for both surface. The weld joints were devided into 5 regions, weld metal, boundary between heat affected zone (HAZ), HAZ, boundary between HAZ and base metal, and base metal. Specimens from each region were machined for a pit shaped initial surface defect with aspect ratio of 2. characteristics of surface fatigue crack por pagation from the defect under the same loading condition were compared and discussed.

  • PDF

A Simplified Estimation of Stress Intensity Factor on the Hertzian Contact

  • Jin, Songbo;Kim, Seock-Sam
    • KSTLE International Journal
    • /
    • 제1권1호
    • /
    • pp.8-11
    • /
    • 2000
  • A surface crack in a semi-infinite body under Hertzian contact was considered. The simplified method used to estimate stress intensity factor K for specimen was extended to the model which is chosen in this paper. Very satisfactory results are obtained comparing with those known and it is proved that the method is more convenient than other methods. The results of the analysis show that due to the presence of $K_I$ for unlubricated condition, mode I fracture is active in the field below the surface and the maximum $K_{I}$ is obtained when the trailing edge of Hertzian contact reaches a position over the crack. The magnitudes of stress intensity factors $K_I$ and $K_Il$ increase with increasing friction forces. For a surface crack perpendicular to the contact surface, the stress intensity factor $K_I$ reaches its maximum value at a depth very close to the surface. Driving forve fer crack initiation and propagation is $K_I$ for unlubricated condition and $K_Il$ for both fluid and boundary lubricated condition.n.

  • PDF

광탄성법에 의한 원고형상크랙을 갖는 원판의 응력확대계수에 관한 연구 (A Photoelastic Study on the Stress Intensity Factor of Circular Disk with an Are-crack)

  • 이치우;김태규;양장홍;오세욱
    • 한국해양공학회지
    • /
    • 제2권2호
    • /
    • pp.96-103
    • /
    • 1988
  • The stress distribution in the vicinity of the crack tip in the fracture mechanics is ordenarily indicated by the stress intensity factor. In the analysis of stress intensity factors, there are many theoretical and experimental methods. The stress analysis in photoelastic technique is usually made by using the difference of the principal stress of isochromatic fringe patterns. In this paper, the teflon molding technique is adopted to make a test specimen with a circular arc-crack, and that upgraded the accuracy of experiment. As the result, the experimental values of the stress intensity factors for the circular disk with a straight crack are coincided with the theoretical values. But, there is quite a difference between this expermental results on the finite plate for circular arc-crack and its theoretical values on the infinite one. Therefore, a boundary condition with regard to the loading condition on finite disk must be considered.

  • PDF

Element-Free Galerkin법을 이용한 혼합모드상태 균열의 균열진전해석 (Crack Propagation Analysis of Mixed Mode Crack by Element-Free Galerkin Method)

  • 이상호;윤열철
    • 한국전산구조공학회논문집
    • /
    • 제12권3호
    • /
    • pp.485-494
    • /
    • 1999
  • 본 연구에서는 요소를 사용하지 않고 절점들만을 이용하여 해석이 가능한 새로운 수치해석기법인 EFG(Element-Free Galerkin)법을 사용하여 임의의 균열의 성장과정을 해석할 수 있는 효율적인 알고리즘을 개발하고, 이를 바탕으로 균열의 성장방향과 경로를 정확히 추정하여 일련의 균열진전해석을 수행할 수 있는 프로그램을 개발하였다. 균열해석에 있어서는 균열선단의 특이성과 균열면의 분연속성을 수치적으로 반영할 수 있는 기법을 도입하여 균열을 모형화하였으며, 선형탄성파괴역학이론에 근거하여 균열해석과정을 정식화하였다. 또한, EFG 형상함수가 kronecker delta 조건을 만족시키지 못함으로써 발생하는 필수경계조건의 처리문제를 penalty법을 이용하여 해결하였다. 개발된 균열진전해석 알고리즘을 정지상태와 성장하는 상태에 있는 모드 Ⅰ, 모드 Ⅱ 및 혼합모드상태의 대표적인 균열문제들에 적용하여 응력확대계수와 균열성장방향 및 균열의 성장경로를 추정하고 이를 이론적·실험적 결과들과 비교함으로써 그 정확성과 효율성을 검증하였다.

  • PDF

A12024-T4의 프레팅 피로균열거동에 관한 실험적 연구 (An experimental study on the fretting fatigue crack behaviour of A12024-T4)

  • 이봉훈;이순복
    • 대한기계학회논문집A
    • /
    • 제21권3호
    • /
    • pp.511-518
    • /
    • 1997
  • The technique of fretting fatigue test was developed and fretting fatigue tests of A12024-T4 were conducted under several conditions. The newly developed calibration methods for measuring surface contact tractions showed good linearity and repeatability. The plate type specimen to which tow bridge type pads were attached and vision system was used to observe the crack behaviour. The oblieque cracks appeared in the early stage of crack growth and they became mode I cracks as they grow about 1 mm. The mode I transition points were found to be longer when surface tractions are higher or bulk stress is lower. Before the crack becomes mode I crack, 'well point' where crack grow about rate is minimum, was detected under every experimental condition. The crack behaviour was found to be affected by surface tractions, contact area, bulk stress. It was also found that partial slip and stick condition is most detrimental and the crack starts from the boundary of stick and slip. For gross slip crack started at the outside edge of pad. After crack mode transition, fretting fatigue cracks showed almost same behaviour of plain mode I fatigue cracks. Equivalent stress intensity factor was used to analyze the behaviour of fretting fatigue cracks and it was found that stress intensity factors can be applied to fretting fatigue cracks.