• Title/Summary/Keyword: Crack

Search Result 9,348, Processing Time 0.043 seconds

A Study on Tensile Property due to Stacking Structure by Fiber Design of CT Specimen Composed of CFRP (CFRP로 구성된 CT시험편의 섬유설계에 의한 적층구조에 따른 인장 특성 연구)

  • Hwang, Gue-Wan;Cho, Jae-Ung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.11
    • /
    • pp.447-455
    • /
    • 2017
  • At the modern industry, the composite material has been widely used. Particularly, the material of carbon fiber reinforced plastic hardened with resin on the basis of fiber is excellent. As the specific strength and rigidity are also superior, it receives attention as the light material. Among these materials, the carbon fiber reinforced plastic using carbon fiber has the superior mechanical property different from another fiber. So, it is utilized in vehicle and airplane at which high strength and light weight are needed at the same time. In this paper, the tensile property due to the fiber design is investigated through the analysis study with CT specimen composed of carbon plastic reinforced plastic. At the stress analysis of CFRP composite material with hole, the fracture trend at the tensile environment is examined. Also, it is shown that the lowest stress value happens and the deformation energy of the pre-crack becomes lowest at the analysis model composed of the stacking angle of 60° through the result due to the stacking angle. On the basis of this study result, it is thought to apply the foundation data to anticipate the fracture configuration at the structure applied with the practical experiment.

The Improvement of Excavation Efficiency of Roadheader by Using Pre-Cracked Method in High Strength Rock (선균열공법을 활용한 고강도 암반구간 로드헤더 굴진효율 향상방안 연구)

  • Hyung-Ryul Kim;Sang-Jun Jung;Jun-Ho Kang
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.141-149
    • /
    • 2023
  • Recently, as the demand for urban underground space increases, urban tunnel planning is actively progressing. In particular, the application of the roadheader excavation method, which has favorable applicability to urban tunnel, is increasing. However, it is known that the roadheader excavation method has a limitation in that excavation efficiency for high strength rock with a Uniaxial Compressive Strength (UCS) of 100 MPa or more is lowered. In this study, The pre-cracked method was presented as a method to improve the excavation efficiency of roadheader for high strength rock and its applicability was evaluated. The net cutting rate was evaluated using the Bilgin prediction formula, which can calculate the net cutting rate by considering the UCS and RQD (Rock Quality Designation). It was found that the net cutting rate increased as the RQD decreased under the rock condition with the same UCS. This is judged to increase the excavation efficiency of the roadheader in the jointed high strength rock. Additionally, the field applicability of the pre-cracked method for high strength rock was verified through field tests. It was confirmed that the crack zone was formed around the charging hole, and it is considered that the pre-cracked method can be applied to the high strength rock.

The gene expression programming method to generate an equation to estimate fracture toughness of reinforced concrete

  • Ahmadreza Khodayari;Danial Fakhri;Adil Hussein, Mohammed;Ibrahim Albaijan;Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Ahmed Babeker Elhag;Shima Rashidi
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.163-177
    • /
    • 2023
  • Complex and intricate preparation techniques, the imperative for utmost precision and sensitivity in instrumentation, premature sample failure, and fragile specimens collectively contribute to the arduous task of measuring the fracture toughness of concrete in the laboratory. The objective of this research is to introduce and refine an equation based on the gene expression programming (GEP) method to calculate the fracture toughness of reinforced concrete, thereby minimizing the need for costly and time-consuming laboratory experiments. To accomplish this, various types of reinforced concrete, each incorporating distinct ratios of fibers and additives, were subjected to diverse loading angles relative to the initial crack (α) in order to ascertain the effective fracture toughness (Keff) of 660 samples utilizing the central straight notched Brazilian disc (CSNBD) test. Within the datasets, six pivotal input factors influencing the Keff of concrete, namely sample type (ST), diameter (D), thickness (t), length (L), force (F), and α, were taken into account. The ST and α parameters represent crucial inputs in the model presented in this study, marking the first instance that their influence has been examined via the CSNBD test. Of the 660 datasets, 460 were utilized for training purposes, while 100 each were allotted for testing and validation of the model. The GEP model was fine-tuned based on the training datasets, and its efficacy was evaluated using the separate test and validation datasets. In subsequent stages, the GEP model was optimized, yielding the most robust models. Ultimately, an equation was derived by averaging the most exemplary models, providing a means to predict the Keff parameter. This averaged equation exhibited exceptional proficiency in predicting the Keff of concrete. The significance of this work lies in the possibility of obtaining the Keff parameter without investing copious amounts of time and resources into the CSNBD test, simply by inputting the relevant parameters into the equation derived for diverse samples of reinforced concrete subject to varied loading angles.

Revision of Repair Materials Performance Requirement for Concrete Structures (콘크리트 구조물 단면복구공사 보수재료 품질기준개선)

  • Lee, Il Keun;Kim, Ki Hwan;Kim, Hong Sam;Yun, Sung Hwan;Kim, Woo Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.9-20
    • /
    • 2023
  • For highway concrete structures, the deterioration of the structure is accelerated due to the increase in the use of deicing materials, and sectional repair work is being frequently carried out to restore performance. However, after the repair work, re-damage such as cracks, delamination, and poor bond performance is exhibited in the repaired sectional area. In this study, overseas repair material requirements were first analyzed, and present domestic requirements were improved repair material performance through field surveys of common concrete structures, laboratory experiments, and test construction on a disused concrete bridge. In addition, performancebased quality requirements were presented so that all materials that meet the required performance can be applied, and different test methods for each material were unified into concrete test methods for consistent test results analysis. The considered performance requirements were compression strength, bending strength, and bond strength for structural properties, and length change rate, crack resistance, thermal expansion coefficient, and elasticity coefficient were for dimensional behavior. For resistance to chloride penetration resistance and freeze-thaw resistance were presented as durability. The proposed requirements for concrete repair materials are expected to contribute to the improvement of the quality of concrete sectional repair work in Korea.

Minimum Design Thickness of Prestressed Concrete Deck Slabs for Composite Two-Girder Bridges (강합성 2거더교 프리스트레스트 바닥판의 설계 최소두께)

  • Hwang, Hoon Hee;Joh, Changbin;Kwark, Jong Won;Lee, Yong Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.183-190
    • /
    • 2006
  • Minimizing the self weight of long-span deck slabs is one of the key factors for the practical and economic design of a composite two-girder bridge. In this paper, the minimum design thickness and rebar details of prestressed concrete deck slabs for composite two-girder bridges with girder span length from 4 m to 12 m are studied based on the safety and serviceability. The bridge deck slab with minimum thickness is designed as a one-way slab considering orthotropic behavior. Then fatigue safety of the deck slab is examined. Serviceability requirements for the deck slab such as deflection and crack width limits are also examined. The result shows that rebars with diameter less than 16 mm is recommended for the improved fatigue behavior, and, for the deck slab with span length longer than 8 m, the deflection limit governs the minimum design thickness. The result also shows that, for the deck slab with span length longer than 4 m, the distribution rebar requirement in the current Korea Highway Bridge Design Code is not sufficient to maintain the structural continuity in bridge axis as expected from the deck slab with span length shorter than 3 m.

Quality Characteristics of the Sugar Cookies with varied levels of Resistant Starch (난소화성 전분의 대체수준을 달리한 슈거 쿠키의 품질 특성)

  • Lee, In-Seon;Kang, Nam-E
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.4
    • /
    • pp.468-474
    • /
    • 2007
  • Physicochemical and sensory characteristics of cookies with various levels of resistant starch were investigated in this study. Dough pH of 30% substituted sample group had significantly the highest value than that of all(p<0.05). Water contents of Dough were decreased with increased levels of the resistant starch in cookie preparation. The spreadability was increased as the addition levels of the resistant starch were increased. The Hunter L and a values of 30% substituted sample group had the highest values of all(p<0.05). Results of sensory characteristics of 30% substituted sample group showed significantly the lower values in hardness and crack than those in the other groups at p<0.05. Acceptance tests of cookies with 10 and 20% substituted sample groups showed higher values in savory flavor and overall acceptability than those of others.

An Experiment on Redundancy in Continuous Span Two-Girder Bridge - Effects of Lateral Bracing (연속 2-거더교의 여유도 평가 실험 - 수평브레이싱의 효과)

  • Park, Yong-Myung;Joe, Woom-Do-Ji;Hwang, Min-Oh;Yoon, Tae-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.417-429
    • /
    • 2008
  • This paper presents an experimental result to evaluate the redundancy in continuous span two plate-girder bridges which are generally classified as a non-redundant load path structure. The experiments were performed when one of the two girders is seriously cracked. To estimate the effects of bottom lateral bracing on the redundancy, the experiment variable was considered as the bottom lateral bracing, and two 1/5-scaled bridge specimens with and without lateral bracing system were fabricated. The ultimate loading tests were conducted on the damaged specimens with an induced crack at a girder in the side span. The test results showed that the load carrying capacity of damaged specimen with bracing was about 1.2 times higher than that without bracing. To evaluate the redundancy in each specimen, numerical analysis was performed to calibrate the difference of dead load between the actual bridge and the test specimens. When the dead load calibration is considered, the results showed that a continuous span two-girder bridges have a reasonable redundancy even without lateral bracing. Especially, the level of redundancy is increased by about 1.8 times when the lateral bracing is provided.

Design of a designated lane enforcement system based on deep learning (딥러닝 기반 지정차로제 단속 시스템 설계)

  • Bae, Ga-hyeong;Jang, Jong-wook;Jang, Sung-jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.236-238
    • /
    • 2022
  • According to the current Road Traffic Act, the 2020 amendment bill is currently in effect as a system that designates vehicle types for each lane for the purpose of securing road use efficiency and traffic safety. When comparing the number of traffic accident fatalities per 10,000 vehicles in Germany and Korea, the number of traffic accident deaths in Germany is significantly lower than in Korea. The representative case of the German autobahn, which did not impose a speed limit, suggests that Korea's speeding laws are not the only answer to reducing the accident rate. The designated lane system, which is observed in accordance with the keep right principle of the Autobahn Expressway, plays a major role in reducing traffic accidents. Based on this fact, we propose a traffic enforcement system to crack down on vehicles violating the designated lane system and improve the compliance rate. We develop a designated lane enforcement system that recognizes vehicle types using Yolo5, a deep learning object recognition model, recognizes license plates and lanes using OpenCV, and stores the extracted data in the server to determine whether or not laws are violated.Accordingly, it is expected that there will be an effect of reducing the traffic accident rate through the improvement of driver's awareness and compliance rate.

  • PDF

The Geomorphological Characteristics of Coastal Dune in Young Gwang, Jeonnam (전남 영광 지역의 해안사구 지형 특성)

  • PARK, Cheol-Woong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.177-191
    • /
    • 2011
  • This paper describes a dune field on shoreline of Young Gwang. To clarify geomorphic characteristics, made an analysis of grain size of the sand sediments samples and surface texture of quartz grains, and field survey. The following results were obtained : 1) Young Gwang sand dune is taking to pieces by human impact, and dose not move ahead the process of sand dune. 2) there was a turbulence of sand sediments outcrops saying to the cryoturbation that represents cold climatic environments, 3) Constituents of sand dune are mainly fine and very fine sand(2.5~4.5Φ) consisted by quartz and feldspar. Young Gwang sand grians have some analogy with different sites in west coast 4) In surface texture, roundness is thought to have been formed sub-angular, and some V cracks represented mechanical weathering environments. Especially, the dune environment has significant cultural and archaeological values arising from the occupation of human in the past. Those areas where occupation is known provide a valuable source of past records relating to human settlement.

Warpage and Solder Joint Strength of Stacked PCB using an Interposer (인터포저를 이용한 Stacked PCB의 휨 및 솔더 조인트 강도 연구)

  • Kipoong Kim;Yuhwan Hwangbo;Sung-Hoon Choa
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.40-50
    • /
    • 2023
  • Recently, the number of components of smartphones increases rapidly, while the PCB size continuously decreases. Therefore, 3D technology with a stacked PCB has been developed to improve component density in smartphone. For the s tacked PCB, it i s very important to obtain solder bonding quality between PCBs. We investigated the effects of the properties, thickness, and number of layers of interposer PCB and sub PCB on warpage of PCB through experimental and numerical analysis to improve the reliability of the stacked PCB. The warpage of the interposer PCB decreased as the thermal expansion coefficient (CTE) of the prepreg decreased, and decreased as the glass transition temperature (Tg) increased. However, if temperature is 240℃ or higher, the reduction of warpage is not large. As FR-5 was applied, the warpage decreased more compared to FR-4, and the higher the number and thickness of the prepreg, the lower the warpage. For sub PCB, the CTE was more important for warpage than Tg of the prepreg, and increase in prepreg thickness was more effective in reducing the warpage. The shear tests indicated that the dummy pad design increased bonding strength. The tumble tests indicated that crack occurrence rate was greatly reduced with the dummy pad.