• Title/Summary/Keyword: CrSiN plasma coating

Search Result 6, Processing Time 0.021 seconds

Studies on the formation of CrN surface layer by chromizing and plasma nitriding (Chromizing과 이온 질화에 의한 CrNvyaus층 형성에 관한연구)

  • Park, H. J.;Lee, S. Y.;Yang, S. C.;Lee, S. Y.;Kim, S. S.;Han, J. G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.6
    • /
    • pp.334-344
    • /
    • 1998
  • Yew coating pmccss t.o form a surface layer ol CrN phasc on mild steel (A81 1020!, AlSI Hi3, 1Cr-0.5Mo steel (ASTM A213 and Nickrl-base superalloy (Inconel 718) was developed. Surlaces of various alloys t,n.ateii by chromizing for the formation ol Cr diffusion layer was subsequently trcaled by plasma nitriding in order t.o form the hard CrS coating layer on the surfaces. This duplex plasma surface tri-atments of chromizing and plasma nitriding have induced a lormation of a duplex-lrcated surfacr hyer of approximat~ls 70-80 $\mu\textrm{m}$thickncss with a iargcly improved microiiardnrss up to approxiniateW 1500Hv(50gf). The main cause for the lage improvment in the surface hardncss is altribilted to [.he fact that CrN and $Fe_xN$ phases are created successfully by ccliromizins and plasma nilriding treatment. High tenipera1,urc wear resislance of the duplex-treated mild steel and HI3 steels at $600^{\circ}C$ was examined. Comparing the duplex-treated specimens with the specimens treated only by chromizing, the rcsults shovmi that, thc wear volume of the duplex-treated mild skcl and 1113 stcel aSt.er a wear test, at $600^{\circ}C$ were reduced hy a Iactor of 8 and 3, respectively. Characteristics of the CrS phase by duplrx treatment were compared with $CrN_x$,/TEX> film by ion plating and the wear behaviors of CrN film lormed by two different nroccsses arc nea.riy identical.

  • PDF

Improvement of the Low-speed Friction Characteristics of a Bent-Axis Type Hydraulic Piston Pump (사축식 유압 피스톤 펌프의 저속 마찰 특성 개선)

  • Hong Yeh-Sun;Lee Sang-Yul;Kim Chi-Bung;Kim Sung-Hoon;Rhim Hyeon-Sik;Kim Sung-Dae
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.3
    • /
    • pp.7-13
    • /
    • 2004
  • The hydraulic pump for a Electro-hydrostatic Actuator for aircrafts should be able to quickly feed large volume of oil into hydraulic cylinder in order to reduce the response time. On the other hand, it should be also able to precisely dispense small amount of oil by low-speed operation so that the steady state position control error of the EHA can be accurately compensated. This paper is focused on the investigation how the plasma coating surface treatment of cylinder barrel with CrSiN can contribute to the reduction of low-speed friction torque of a bent-axis type piston pump. The results showed that the reduction of the friction torque was not remarkable, but that the anti-wear characteristics of the CrSiN-coated cylinder barrel were much better that those of the original one.

  • PDF

Plasma nitriding on chromium electrodeposit

  • Wang Liang;K.S. Nam;Kim, D.;Kim, M.;S.C. Kwon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.29-30
    • /
    • 2001
  • This paper presents some results of plasma nitriding on hard chromium deposit. The substrates were C45 steel and $30~50{\;}\mu\textrm{m}$ of chromium deposit by electroplating was formed. Plasma nitriding was carried out in a plasma nitriding system with $95NH_3{\;}+{\;}SCH_4$ atmosphere at the pressure about 600 Pa and different temperature from $450^{\circ}C{\;}to{\;}720^{\circ}C$ for various time. Optical microscopy and X-ray diffraction were used to evaluate the characteristics of surface nitride layer formed by nitrogen diffusion from plasma atmosphere inward iCr coating and interface carbide layer formed by carbon diffusion from substrate outward Cr coating. The microhardness was measured using microhareness tester at the load of 100 gf. Corrosion resistance was evaluated using the potentiodynamic measurement in 3.5% NaG solution. A saturated calomel electrode (SiCE) was used as the reference electrode. Fig.1 shows the typical microstructures of top surface and cross-section for nitrided and unnitrided samples. Aaer plasma nitriding a sandwich structure was formed consisting of surface nitride layer, center chromium layer and interface carbide layer. The thickness of nitride and carbide layers was increased with the increase of processing temperature and time. Hardness reached about 1000Hv after nitriding while 900Hv for unnitrided hard chromium deposit. X-ray diffraction indicated that surface nitrided layer was a mixture of $Cr_2N$ and CrN at low temperature and erN at high temperature (Fig.2). Anodic polarization curves showed that plasma nitriding can greatly improve the corrosion resistance of chromium e1ectrodeposit. After plasma nitriding, the corrosion potential moved to noble direction and passive current density was lower by 1 to 4 orders of magnitude compared with chromium deposit(Fig.3).

  • PDF

Investigation of the TiCrN Coating Deposited by Inductively Coupled Plasma Assisted DC Magnetron Sputtering. (Inductively Coupled Plasma Assisted D.C. Magnetron Sputtering법으로 제작된 TiCrN 코팅층의 특성 분석)

  • Cha, B.C.;Kim, J.H.;Lee, B.S.;Kim, S.K.;Kim, D.W.;Kim, D.;You, Y.Z.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.5
    • /
    • pp.267-274
    • /
    • 2009
  • Titanium Chromium Nitrided (TiCrN) coatings were deposited on stainless steel 316 L and Si (100) wafer by inductively coupled plasma assisted D.C. magnetron sputtering at the various sputtering power on Cr target and $N_2/Ar$ gas ratio. Increasing the sputtering power of Cr target, XRD patterns were changed from TiCrN to nitride $Cr_2Ti$. The maximum hardness was $Hk_{3g}$ 3900 at $0.3\;N_2/Ar$ gas ratio. The thickness of the TiCrN films increased as the Cr target power increased, and it showed over $Hk_{5g}3100$ hardness at 100 W, 150 W. TiCrN films were deposited by the ICP assisted DC magnetron sputtering shown good wear resistance as the $N_2/Ar$ gas ratio was 0.1, 0.3.

Bioinspired superhydrophobic steel surfaces

  • Heo, Eun-Gyu;O, Gyu-Hwan;Lee, Gwang-Ryeol;Mun, Myeong-Un
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.509-509
    • /
    • 2011
  • Superhydrophobic surfaces on alloyed steels were fabricated with a non-conventional method of plasma etching and subsequent water immersion procedure. High aspect ratio nanopatterns of nanoflake or nano-needle were created on the steels with various Cr content in its composition. With CF4 plasma treatment in radio-frequence chemical vapor deposition (r.-f. CVD) method, steel surfaces were etched and fluorinated by CF4 plasma, which induced the nanopattern evolution through the water immersion process. It was found that fluorine ion played a role as a catalyst to form nanopatterns in water elucidated with XPS and TEM analysis. The hierarchical patterns in micro- and nano scale leads to superhydrophobic properties on the surfaces by deposition of a hydrophobic coating with a-C:H:Si:O film deposited with a gas precursor of hexamethlydisiloxane (HMDSO) with its lower surface energy of 24.2 mN/m, similar to that of curticular wax covering lotus surfaces. Since this method is based on plasma dry etching & coating, precise patterning of surface texturing would be potential on steel or metal surfaces. Patterned hydrophobic steel surfaces were demonstrated by mimicking the Robinia pseudoacacia or acacia leaf, on which water was collected from the humid air using a patterned hydrophobicity on the steels. It is expected that this facile, non-toxic and fast technique would accelerate the large-scale production of superhydrophobic engineering materials with industrial applications.

  • PDF

Effects of ICP Power on the Properties of TiCrN Films (유도결합플라즈마의 전력이 TiCrN 코팅층에 미치는 영향)

  • Cha, B.C.;Kim, J.H.;Lee, B.S.;Kim, S.K.;Kim, D.W.;Kim, D.;You, Y.Z.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.5
    • /
    • pp.307-311
    • /
    • 2009
  • In this study, TiCrN films were deposited on STS 316 Land Si (100) wafer by inductively coupled plasma (ICP) assisted D.C. magnetron sputtering. The effect R.F. power for ICP discharge on the mechanical properties of TiCrN films was investigated. XRD, XPS and FE-SEM were used for the structure analysis. Also the Micro-Knoop hardness tester and profilometer were used for measuring hardness of coatings and film stress respectively. As increasing the R.F. power for ICP discharge, thickness of coating was decreased from 1633 nm to 1288 nm but hardness was increased about $Hk_{5g}$ 4200 at 400 W. All of the XRD patterns showed (111), (200) and (220) peaks of TiCrN films. Surface morphology was studied using the profilometer. FE-SEM was used to know morphology and cross-section of the films. Structure of the films was changed dense as increased ICP power.