• Title/Summary/Keyword: CpG methylation

Search Result 110, Processing Time 0.023 seconds

A concise review of human brain methylome during aging and neurodegenerative diseases

  • Prasad, Renuka;Jho, Eek-hoon
    • BMB Reports
    • /
    • v.52 no.10
    • /
    • pp.577-588
    • /
    • 2019
  • DNA methylation at CpG sites is an essential epigenetic mark that regulates gene expression during mammalian development and diseases. Methylome refers to the entire set of methylation modifications present in the whole genome. Over the last several years, an increasing number of reports on brain DNA methylome reported the association between aberrant methylation and the abnormalities in the expression of critical genes known to have critical roles during aging and neurodegenerative diseases. Consequently, the role of methylation in understanding neurodegenerative diseases has been under focus. This review outlines the current knowledge of the human brain DNA methylomes during aging and neurodegenerative diseases. We describe the differentially methylated genes from fetal stage to old age and their biological functions. Additionally, we summarize the key aspects and methylated genes identified from brain methylome studies on neurodegenerative diseases. The brain methylome studies could provide a basis for studying the functional aspects of neurodegenerative diseases.

Association of DNA Methylation Levels with Tissue-specific Expression of Adipogenic and Lipogenic Genes in Longissimus dorsi Muscle of Korean Cattle

  • Baik, M.;Vu, T.T.T.;Piao, M.Y.;Kang, H.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1493-1498
    • /
    • 2014
  • Epigenetic factors, such as DNA methylation status, may regulate adipogenesis and lipogenesis, thus affecting intramuscular fat (IMF) deposition in longissimus dorsi muscle (LM) of beef cattle. In Korean cattle steers, the LM consists mainly of muscle tissue. However, the LM tissue also contains IMF. We compared the gene expression levels between the IMF and muscle portions of the LM after tissue separation. Real-time polymerase chain reaction analysis showed that the mRNA levels of both adipogenic peroxisome proliferator-activated receptor gamma isoform 1 (PPARG1) and lipogenic fatty acid binding protein 4 (FABP4) were higher (p<0.01) in the IMF than in the muscle portion of the LM. We determined DNA methylation levels of regulatory regions of the PPARG1 and FABP4 genes by pyrosequencing of genomic DNA. DNA methylation levels of two of three CpG sites in the PPARG1 gene promoter region were lower (p<0.05) in the IMF than in the muscle portion of the LM. DNA methylation levels of all five CpG sites from the FABP4 gene promoter region were also lower (p<0.001) in the IMF than in the muscle portion. Thus, mRNA levels of both PPARG1 and FABP4 genes were inversely correlated with DNA methylation levels in regulatory regions of CpG sites of the corresponding gene. Our findings suggest that DNA methylation status regulates tissue-specific expression of adipogenic and lipogenic genes in the IMF and muscle portions of LM tissue in Korean cattle.

Epigenetic Characterization of Aging Related Genes (노화 관련 유전자의 후성유전학적 특성 분석)

  • Ryu, Jea Woon;Lee, Sang Cheol;Yoo, Jaesoo;Kim, Hak Yong
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.466-473
    • /
    • 2013
  • Gene expression is regulated by a wide range of mechanisms at the DNA sequence level. In addition, gene expression is also regulated by epigenetic mechanisms through DNA methylation, histone modification, and ncRNA. To understand the regulation of gene expression at the epigenetic level, we constructed aging related gene database and analyzed epigenetic properties that are focused on DNA methylation. The DNA methylation of promoter or upstream region of the genes induces to repress the gene expression. We compared and analyzed distribution between whole human genes and aging related genes in the epigenetic properties such as CGI distribution, methylation motif pattern, and TFBS (transcription factor binding site) distribution. In contrast to methylation motif pattern, CGI and TFBS distributions are positively correlated with epigenetic regulation of aging related gene expression. In this study, the epigenetic data about DNA methylation of the aging genes will provide us to understand phenomena of the aging and epigenetic mechanism for regulation of aging related genes.

Regulatory Mechanism of Insulin-Like Growth Factor Binding Protein-3 in Non-Small Cell Lung Cancer (비소세포성 폐암에서 인슐린 양 성장 인자 결합 단백질-3의 발현 조절 기전)

  • Chang, Yoon Soo;Lee, Ho-Young;Kim, Young Sam;Kim, Hyung Jung;Chang, Joon;Ahn, Chul Min;Kim, Sung Kyu;Kim, Se Kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.5
    • /
    • pp.465-484
    • /
    • 2004
  • Background : Insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) inhibits the proliferation of non-small cell lung cancer (NSCLC) cells by inducing apoptosis. Methods : In this study, we investigated whether hypermethylation of IGFBP-3 promoter play an important role in the loss of IGFBP-3 expression in NSCLC. We also studied the mechanisms that mediate the silencing of IGFBP-3 expression in the cell lines which have hypermethylated IGFBP-3 promoter. Results : The IGFBP-3 promoter has hypermethylation in 7 of 15 (46.7%) NSCLC cell lines and 16 (69.7%) of 23, 7 (77.8%) of 9, 4 (80%) of 5, 4 (66.7 %) of 6, and 6 (100%) of 6 tumor specimens from patients with stage I, II, IIIA, IIIB, and IV NSCLC, respectively. The methylation status correlated with the level of protein and mRNA in NSCLC cell lines. Expression of IGFBP-3 was restored by the demethylating agent 5'-aza-2'-deoxycytidine (5'-aza-dC) in a subset of NSCLC cell lines. The Sp-1/ Sp-3 binding element in the IGFBP-3 promoter, important for promoter activity, was methylated in the NSCLC cell lines which have reduced IGFBP-3 expression and the methylation of this element suppressed the binding of the Sp-1 transcription factor. A ChIP assay showed that the methylation status of the IGFBP-3 promoter influenced the binding of Sp-1, methyl-CpG binding protein-2 (MeCP2), and histone deacetylase (HDAC) to Sp-1/Sp-3 binding element, which were reversed by by 5'-aza-dC. In vitro methylation of the IGFBP-3 promoter containing the Sp-1/Sp-3 binding element significantly reduced promoter activity, which was further suppressed by the overexpression of MeCP2. This reduction in activity was rescued by 5'-aza-dC. Conclusion : These findings indicate that hypermethylation of the IGFBP-3 promoter is one mechanism by which IGFBP-3 expression is silenced and MeCP2, with recruitment of HDAC, may play a role in silencing of IGFBP-3 expression. The frequency of this abnormality is also associated with advanced stages among the patients with NSCLC, suggesting that IGFBP-3 plays an important role in lung carcinogenesis/progression and that the promoter methylation status of IGFBP-3 may be a marker for early molecular detection and/or for monitoring chemoprevention efforts.

Gastrokine 1 Expression in the Human Gastric Mucosa Is Closely Associated with the Degree of Gastritis and DNA Methylation

  • Choi, Won Suk;Seo, Ho Suk;Song, Kyo Young;Yoon, Jung Hwan;Kim, Olga;Nam, Suk Woo;Lee, Jung Yong;Park, Won Sang
    • Journal of Gastric Cancer
    • /
    • v.13 no.4
    • /
    • pp.232-241
    • /
    • 2013
  • Purpose: Gastrokine 1 plays an important role in gastric mucosal defense. Additionally, the Gastrokine 1-miR-185-DNMT1 axis has been shown to suppress gastric carcinogenesis through regulation of epigenetic alteration. Here, we investigated the effects of Gastrokine 1 on DNA methylation and gastritis. Materials and Methods: Expression of Gastrokine 1, DNMT1, EZH2, and c-Myc proteins, and the presence of Helicobacter pylori CagA protein were determined in 55 non-neoplastic gastric mucosal tissue samples by western blot analysis. The CpG island methylation phenotype was also examined using six markers (p16, hMLH1, CDH1, MINT1, MINT2 and MINT31) by methylation-specific polymerase chain reaction. Histological gastritis was assessed according to the updated Sydney classification system. Results: Reduced Gastrokine 1 expression was found in 20 of the 55 (36.4%) gastric mucosal tissue samples and was closely associated with miR-185 expression. The Gastrokine 1 expression level was inversely correlated with that of DNMT1, EZH2, and c-Myc, and closely associated with the degree of gastritis. The H. pylori CagA protein was detected in 26 of the 55 (47.3%) gastric mucosal tissues and was positively associated with the expression of DNMT1, EZH2, and c-Myc. In addition, 30 (54.5%) and 23 (41.9%) of the gastric mucosal tissues could be classified as CpG island methylation phenotype-low and CpG island methylation phenotype-high, respectively. Reduced expression of Gastrokine 1 and miR-185, and increased expression of DNMT1, EZH2, and c-Myc were detected in the CpG island methylation phenotype-high gastric mucosa. Conclusions: Gastrokine 1 has a crucial role in gastric inflammation and DNA methylation in gastric mucosa.

A Visualization Tool for Computational Analysis of DNA Methylation Level Using Bisulfite Sequencing Data

  • Tae, Hong-Seok
    • Genomics & Informatics
    • /
    • v.9 no.3
    • /
    • pp.136-137
    • /
    • 2011
  • Methylation of cytosine is a post-synthesis modification that does not affect the primary DNA sequence but greatly influences gene expression level and phenotypes of an organism. As high-throughput sequencing of bisulfite-treated DNA is the most efficient method to identify methylated sites, several tools to map sequencing reads on a reference are available. But tools to visualize and to interpret the methylation level of methylation sites are currently insufficient. Herein, we present a novel tool to visualize the methylation level of CpG sites.

Maternal undernutrition alters the skeletal muscle development and methylation of myogenic factors in goat offspring

  • Zhou, Xiaoling;Yan, Qiongxian;Liu, Liling;Chen, Genyuan;Tang, Shaoxun;He, Zhixiong;Tan, Zhiliang
    • Animal Bioscience
    • /
    • v.35 no.6
    • /
    • pp.847-857
    • /
    • 2022
  • Objective: The effects of maternal undernutrition during midgestation on muscle fiber histology, myosin heavy chain (MyHC) expression, methylation modification of myogenic factors, and the mammalian target of rapamycin (mTOR) signaling pathway in the skeletal muscles of prenatal and postnatal goats were examined. Methods: Twenty-four pregnant goats were assigned to a control (100% of the nutrients requirement, n = 12) or a restricted group (60% of the nutrients requirement, n = 12) between 45 and 100 days of gestation. Descendants were harvested at day 100 of gestation and at day 90 after birth to collect the femoris muscle tissue. Results: Maternal undernutrition increased (p<0.05) the fiber area of the vastus muscle in the fetuses and enhanced (p<0.01) the proportions of MyHCI and MyHCIIA fibers in offspring, while the proportion of MyHCIIX fibers was decreased (p<0.01). DNA methylation at the +530 cytosine-guanine dinucleotide (CpG) site of the myogenic factor 5 (MYF5) promoter in restricted fetuses was increased (p<0.05), but the methylation of the MYF5 gene at the +274,280 CpG site and of the myogenic differentiation (MYOD) gene at the +252 CpG site in restricted kids was reduced (p<0.05). mTOR protein signals were down-regulated (p<0.05) in the restricted offspring. Conclusion: Maternal undernutrition altered the muscle fiber type in offspring, but its relationship with methylation in the promoter regions of myogenic genes needs to be elucidated.

Application of Data Mining for Biomedical Data Processing (바이오메디컬 데이터 처리를 위한 데이터마이닝 활용)

  • Shon, Ho-Sun;Kim, Kyoung-Ok;Cha, Eun-Jong;Kim, Kyung-Ah
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1236-1241
    • /
    • 2016
  • Cancer has been the most frequent in Korea, and pathogenesis and progression of cancer have been known to be occurred through various causes and stages. Recently, the research of chromosomal and genetic disorder and the research about prognostic factor to predict occurrence, recurrence and progress of chromosomal and genetic disorder have been performed actively. In this paper, we analyzed DNA methylation data downloaded from TCGA (The Cancer Genome Atlas), open database, to research bladder cancer which is the most frequent among urinary system cancers. Using three level of methylation data which had the most preprocessing, 59 candidate CpG island were extracted from 480,000 CpG island, and then we analyzed extracted CpG island applying data mining technique. As a result, cg12840719 CpG island were analyzed significant, and in Cox's regression we can find the CpG island with high relative risk in comparison with other CpG island. Shown in the result of classification analysis, the CpG island which have high correlation with bladder cancer are cg03146993, cg07323648, cg12840719, cg14676825 and classification accuracy is about 76%. Also we found out that positive predictive value, the probability which predicts cancer in case of cancer was 72.4%. Through the verification of candidate CpG island from the result, we can utilize this method for diagnosing and treating cancer.

Genome-wide DNA Methylation Profiles of Small Intestine and Liver in Fast-growing and Slow-growing Weaning Piglets

  • Kwak, Woori;Kim, Jin-Nam;Kim, Daewon;Hong, Jin Su;Jeong, Jae Hark;Kim, Heebal;Cho, Seoae;Kim, Yoo Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1532-1539
    • /
    • 2014
  • Although growth rate is one of the main economic traits of concern in pig production, there is limited knowledge on its epigenetic regulation, such as DNA methylation. In this study, we conducted methyl-CpG binding domain protein-enriched genome sequencing (MBD-seq) to compare genome-wide DNA methylation profile of small intestine and liver tissue between fast- and slow-growing weaning piglets. The genome-wide methylation pattern between the two different growing groups showed similar proportion of CpG (regions of DNA where a cytosine nucleotide occurs next to a guanine nucleotide in the linear sequence) coverage, genomic regions, and gene regions. Differentially methylated regions and genes were also identified for downstream analysis. In canonical pathway analysis using differentially methylated genes, pathways (triacylglycerol pathway, some cell cycle related pathways, and insulin receptor signaling pathway) expected to be related to growth rate were enriched in the two organ tissues. Differentially methylated genes were also organized in gene networks related to the cellular development, growth, and carbohydrate metabolism. Even though further study is required, the result of this study may contribute to the understanding of epigenetic regulation in pig growth.

Relationships among MTHFR a1298c Gene Polymorphisms and Methylation Status of Dact1 Gene in Transitional Cell Carcinomas

  • Cheng, Huan;Lu, Meng;Mao, Li-Jun;Wang, Jun-Qi;Li, Wang;Wen, Ru-Min;Chen, Jia-Cun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5069-5074
    • /
    • 2012
  • Objectives: The purpose of this study was to determine the relationship between methylation status of the Dact1 gene and MTHFR a1298c polymorphic forms in transitional cell carcinoma tissues in a Chinese population. Methods: Polymorphisms of folate metabolism enzyme gene MTHFR were assessed by restrictive fragment length polymorphism (RFLP) methods and PCR-based DNA methylation analysis was used to determine the CpG island methylation status of the Dact1 gene. Associations between the methylation status of the Dact1 gene and clinical characteristics, as well as MTHFR a1298c polymorphisms, were analyzed. Results: aberrant methylation of the Dact1 gene was found in 68.3% of cancer tissues and 12.4% of normal tissues,. The methylation rate of the Dact1 gene in cancer tissues was significantly higher in patients with lymph node metastasis than in those without lymph node metastasis (46.3% vs. 17.2%, P = 0.018). No association was found between aberrant DNA methylation and selected factors including sex, age, tobacco smoking, alcohol consumption and green tea consumption. After adjusting for potential confounding variables, variant allele of MTHFR a1298c was found to be associated with methylation of the Dact1 gene. Compared with wild type CC, the odds ratio was 4.33 (95% CI: 1.06-10.59) for AC and 4.95 (95% CI: 1.18-12.74) for AA. The N stage in TNM staging and the occurrence of lymph node metastasis were associated with an MTHFR 1298 AA+AC genotype (P<0.05). Conclusion: MTHFR 1298 AC and AA genotypes might help maintain a normal methylation status of the Dact1 gene, aberrant CpG island methylation of which is closely related to the genesis and progression of transitional cell carcinoma.