• Title/Summary/Keyword: CpG DNA

Search Result 143, Processing Time 0.029 seconds

Influence of Oocyte Nuclei on Demethylation of Donor Genome in Cloned Bovine Embryos

  • Y.K. Kang;D.B Koo;Park, J.S.;Park, Y.H.;Lee, K.K.;Y.M. Han
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.15-15
    • /
    • 2001
  • We recently demonstrated that satellite regions exhibit an aberrant DNA methylation in cloned bovine embryos. Here, we examined, using bisulfite -sequencing technology, whether the inefficient demethylation of cloned donor genomes could be rescued by the presence of oocytic nuclei. Both AciI digestion and sequencing analyses showed that satellite sequence was demethylated more efficiently in cloned tetraploid blastocysts than in diploid clones. When methyl -CpG density (the number of methyl-CpG sites per string) was scored, a significant decrease was observed In tetraploids (P<0.001). These results suggest that unknown mechanisms provided by oocytic nuclei could assist the demethylation of satellite sequences in tetraploid clones.

  • PDF

Epigenetic Changes within the Promoter Regions of Antigen Processing Machinery Family Genes in Kazakh Primary Esophageal Squamous Cell Carcinoma

  • Sheyhidin, Ilyar;Hasim, Ayshamgul;Zheng, Feng;Ma, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10299-10306
    • /
    • 2015
  • The esophageal squamous cell carcinoma (ESCC) is thought to develop through a multi-stage process. Epigenetic gene silencing constitutes an alternative or complementary mechanism to mutational events in tumorigenesis. Posttranscriptional regulation of human leukocyte antigen class I (HLA-I) and antigen processing machinery (APM) proteins expression may be associated with novel epigenetic modifications in cancer development. In the present study, we determined the expression levels of HLA-I antigen and APM components by immunohistochemistry. Then by a bisulfite-sequencing PCR (BSP) approach, we identified target CpG islands methylated at the gene promoter region of APM family genes in a ESCC cell line (ECa109), and further quantitative analysis of CpG site specific methylation of these genes in cases of Kazakh primary ESCCs with corresponding non-cancerous esophageal tissues using the Sequenom MassARRAY platform. Here we showed that the development of ESCCs was accompanied by partial or total loss of protein expression of HLA-B, TAP2, LMP7, tapasin and ERp57. The results demonstrated that although no statistical significance was found of global target CpG fragment methylation level sof HLA-B, TAP2, tapasin and ERp57 genes between ESCC and corresponding non-cancerous esophageal tissues, there was significant differences in the methylation level of several single sites between the two groups. Of thesse only the global methylation level of LMP7 gene target fragments was statistically higher ($0.0517{\pm}0.0357$) in Kazakh esophageal cancer than in neighboring normal tissues ($0.0380{\pm}0.0214$, p<0.05). Our results suggest that multiple CpG sites, but not methylation of every site leads to down regulation or deletion of gene expression. Only some of them result in genetic transcription, and silencing of HLA-B, ERp57, and LMP7 expression through hypermethylation of the promoters or other mechanisms may contribute to mechanisms of tumor escape from immune surveillance in Kazakh esophageal carcinogenesis.

A kinetic study of 4-chlorophenol biodegradation by the novel isolated Bacillus subtilis in batch shake flask

  • Sandhibigraha, Sudhansu;Chakraborty, Sagnik;Bandyopadhyay, Tarunkanti;Bhunia, Biswanath
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.62-70
    • /
    • 2020
  • Here in this work, a 4-chlorophenol (4-CP)-degrading bacterial strain Bacillus subtilis (B. subtilis) MF447840.1 was isolated from the drain outside the Hyundai car service center, Agartala, Tripura, India. 16S rDNA technique used carried out for genomic recognition of the bacterial species. Isolated bacterial strain was phylogenetically related with B. subtilis. This strain was capable of breaking down both phenol and 4-CP at the concentration of 1,000 mg/L. Also, the isolated strain can able to metabolize five diverse aromatic molecules such as 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, 4-nitrophenol, and pentachlorophenol for their growth. An extensive investigation was performed to portray the kinetics of cell growth along with 4-CP degradation in the batch study utilizing 4-CP as substrate. Various unstructured models were applied to evaluate the intrinsic kinetic factors. Levenspiel's model demonstrates a comparatively enhanced R2 value (0.997) amongst every analyzed model. The data of specific growth rate (μ), saturation constant (KS), and YX/S were 0.11 h-1, 39.88 mg/L, along with 0.53 g/g, correspondingly. The isolated strain degrades 1,000 mg/L of 4-CP within 40 h. Therefore, B. subtilis MF447840.1 was considered a potential candidate for 4-CP degradation.

Epigenetic insights into colorectal cancer: comprehensive genome-wide DNA methylation profiling of 294 patients in Korea

  • Soobok Joe;Jinyong Kim;Jin-Young Lee;Jongbum Jeon;Iksu Byeon;Sae-Won Han;Seung-Bum Ryoo;Kyu Joo Park;Sang-Hyun Song;Sheehyun Cho;Hyeran Shim;Hoang Bao Khanh Chu;Jisun Kang;Hong Seok Lee;DongWoo Kim;Young-Joon Kim;Tae-You Kim;Seon-Young Kim
    • BMB Reports
    • /
    • v.56 no.10
    • /
    • pp.563-568
    • /
    • 2023
  • DNA methylation regulates gene expression and contributes to tumorigenesis in the early stages of cancer. In colorectal cancer (CRC), CpG island methylator phenotype (CIMP) is recognized as a distinct subset that is associated with specific molecular and clinical features. In this study, we investigated the genome-wide DNA methylation patterns among patients with CRC. The methylation data of 1 unmatched normal, 142 adjacent normal, and 294 tumor samples were analyzed. We identified 40,003 differentially methylated positions with 6,933 (79.8%) hypermethylated and 16,145 (51.6%) hypomethylated probes in the genic region. Hypermethylated probes were predominantly found in promoter-like regions, CpG islands, and N shore sites; hypomethylated probes were enriched in open-sea regions. CRC tumors were categorized into three CIMP subgroups, with 90 (30.6%) in the CIMP-high (CIMP-H), 115 (39.1%) in the CIMP-low (CIMP-L), and 89 (30.3%) in the non-CIMP group. The CIMP-H group was associated with microsatellite instability-high tumors, hypermethylation of MLH1, older age, and right-sided tumors. Our results showed that genome-wide methylation analyses classified patients with CRC into three subgroups according to CIMP levels, with clinical and molecular features consistent with previous data.

($P16^{ink4}$ Methylation in Squamous Cell Carcinoma of the Oral Cavity. (구강 편평세포암종에서 $P16^{ink4}$ 유전자의 Methylation에 대한 연구)

  • Kang, Gin-Won;Kim, Kyung-Wook;Lyu, Jin-Woo;Kim, Chang-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.22 no.2
    • /
    • pp.164-173
    • /
    • 2000
  • The p16 protein is a cyclin dependent kinase inhibitor that inhibits cell cycle progression from $G_1$ phase to S phase in cell cycle. Many p16 gene mutations have been noted in many cancer-cell lines and in some primary cancers, and alterations of p16 gene function by DNA methylation have been noticed in various kinds of cancer tissues and cell-lines. There have been a large body of literature has accumulated indicating that abnormal patterns of DNA methylation (both hypomethylation and hypermethylation) occur in a wide variety of human neoplasma and that these aberrations of DNA methylation may play an important epigenetic role in the development and progression of neoplasia. DNA methylation is a part of the inheritable epigenetic system that influences expression or silencing of genes necessary for normal differentiation and proliferation. Gene activity may be silenced by methylation of up steream regulatory regions. Reactivation is associated with demethylation. Although evidence or a high incidence of p16 alterations in a variety of cell lines and primary tumors has been reported, that has been contested by other investigators. The precise mechanisms by which abnormal methylation might contribute to carcinogenesis are still not fully elucidated, but conceivably could involve the modulation of oncogene and other important regulatory gene expression, in addition to creating areas of genetic instability, thus predisposing to mutational events causing neoplasia. There have been many variable results of studies of head and neck squamous cell carcinoma(HNSCC). This investigation was studied on 13 primary HNSCC for p16 gene status by protein expression in immunohistochemistry, and DNA genetic/epigenetic analyzed to determine the incidence, the mechanisms, and the potential biological significance of its Inactivation. As methylation detection method of p16 gene, the methylation specific PCR(MSP) is sensitive and specific for methylation of any block of CpG sites in a CpG islands using bisulfite-modified DNA. The genomic DNA is modified by treatment with sodium bisulfate, which converts all unmethylated cytosines to uracil(thymidine). The primers designed for MSP were chosen for regions containing frequent cytosines (to distinguish unmodified from modified DNA), and CpG pairs near the 5' end of the primers (to provide maximal discrimination in the PCR between methylated and unmethylated DNA). The two strands of DNA are no longer complementary after bisulfite treatment, primers can be designed for either modified strand. In this study, 13 paraffin embedded block tissues were used, so the fragment of DNA to be amplified was intentionally small, to allow the assessment of methylation pattern in a limited region and to facilitate the application of this technique to samlples. In this 13 primary HNSCC tissues, there was no methylation of p16 promoter gene (detected by MSP and automatic sequencing). The p16 protein-specific immunohistochemical staining was performed on 13 paraffin embedded primary HNSCC tissue samples. Twelve cases among the 13 showed altered expression of p16 proteins (negative expression). In this study, The author suggested that low expression of p16 protein may play an important role in human HNSCC, and this study suggested that many kinds of genetic mechanisms including DNA methylation may play the role in carcinogenesis.

  • PDF

Classification of Colon Cancer Patients Based on the Methylation Patterns of Promoters

  • Choi, Wonyoung;Lee, Jungwoo;Lee, Jin-Young;Lee, Sun-Min;Kim, Da-Won;Kim, Young-Joon
    • Genomics & Informatics
    • /
    • v.14 no.2
    • /
    • pp.46-52
    • /
    • 2016
  • Diverse somatic mutations have been reported to serve as cancer drivers. Recently, it has also been reported that epigenetic regulation is closely related to cancer development. However, the effect of epigenetic changes on cancer is still elusive. In this study, we analyzed DNA methylation data on colon cancer taken from The Caner Genome Atlas. We found that several promoters were significantly hypermethylated in colon cancer patients. Through clustering analysis of differentially methylated DNA regions, we were able to define subgroups of patients and observed clinical features associated with each subgroup. In addition, we analyzed the functional ontology of aberrantly methylated genes and identified the G-protein-coupled receptor signaling pathway as one of the major pathways affected epigenetically. In conclusion, our analysis shows the possibility of characterizing the clinical features of colon cancer subgroups based on DNA methylation patterns and provides lists of important genes and pathways possibly involved in colon cancer development.

Genome-wide hepatic DNA methylation changes in high-fat diet-induced obese mice

  • Yoon, AhRam;Tammen, Stephanie A.;Park, Soyoung;Han, Sung Nim;Choi, Sang-Woon
    • Nutrition Research and Practice
    • /
    • v.11 no.2
    • /
    • pp.105-113
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: A high-fat diet (HFD) induces obesity, which is a major risk factor for cardiovascular disease and cancer, while a calorie-restricted diet can extend life span by reducing the risk of these diseases. It is known that health effects of diet are partially conveyed through epigenetic mechanism including DNA methylation. In this study, we investigated the genome-wide hepatic DNA methylation to identify the epigenetic effects of HFD-induced obesity. MATERIALS AND METHODS: Seven-week-old male C57BL/6 mice were fed control diet (CD), calorie-restricted control diet (CRCD), or HFD for 16 weeks (after one week of acclimation to the control diet). Food intake, body weight, and liver weight were measured. Hepatic triacylglycerol and cholesterol levels were determined using enzymatic colorimetric methods. Changes in genome-wide DNA methylation were determined by a DNA methylation microarray method combined with methylated DNA immunoprecipitation. The level of transcription of individual genes was measured by real-time PCR. RESULTS: The DNA methylation statuses of genes in biological networks related to lipid metabolism and hepatic steatosis were influenced by HFD-induced obesity. In HFD group, a proinflammatory Casp1 (Caspase 1) gene had hypomethylated CpG sites at the 1.5-kb upstream region of its transcription start site (TSS), and its mRNA level was higher compared with that in CD group. Additionally, an energy metabolism-associated gene Ndufb9 (NADH dehydrogenase 1 beta subcomplex 9) in HFD group had hypermethylated CpG sites at the 2.6-kb downstream region of its TSS, and its mRNA level was lower compared with that in CRCD group. CONCLUSIONS: HFD alters DNA methylation profiles in genes associated with liver lipid metabolism and hepatic steatosis. The methylation statuses of Casp1 and Ndufb9 were particularly influenced by the HFD. The expression of these genes in HFD differed significantly compared with CD and CRCD, respectively, suggesting that the expressions of Casp1 and Ndufb9 in liver were regulated by their methylation statuses.

Draft genome sequence of lytic bacteriophage CP3 infecting anaerobic bacterial pathogen Clostridium perfringens (혐기성 병원균 Clostridium perfringens를 감염시키는 용균 박테리오파지 CP3의 유전체 염기서열 초안)

  • Kim, Youngju;Ko, Seyoung;Yeon, Young Eun;Le, Hoa Thi;Han, Beom Ku;Kim, Hyunil;Oh, Chang-Sik;Kim, Donghyuk
    • Korean Journal of Microbiology
    • /
    • v.54 no.2
    • /
    • pp.149-151
    • /
    • 2018
  • Clostridium perfringens is a Gram-positive, rod-shaped, anaerobic, spore-forming pathogenic bacterium, which belongs to the Clostridiaceae family. C. perfringens causes diseases including food poisoning in vertebrates and intestinal tract of humans. Bacteriophages that can kill target bacteria specifically have been considered as one of control methods for bacterial pathogens. Here, we report a draft genome sequence of the bacteriophage CP3 effective to C. perfringens. The phage genome comprises 52,068 bp with a G + C content of 34.0%. The draft genome has 74 protein-coding genes, 29 of which have predicted functions from BLASTp analysis. Others are conserved proteins with unknown functions. No RNAs were found in the genome.

Induction of Apoptotic Cell Death in Human Jurkat T Cells by a Chlorophyll Derivative (Cp-D) Isolated from Actinidia arguta Planchon

  • Park, Youn-Hee;Chun, En-Mi;Bae, Myung-Ae;Seu, Young-Bae;Song, Kyung-Sik;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.27-34
    • /
    • 2000
  • The chloroform and methanol (2;1, v/v) extract from an edible plant, Actinidia arguta Planchon, appeared to possess antitumor activity against human leukemias Jurkat T and U937 cells through inducing apoptosis. The substance in the solvent extract was purified by silica gel column chromatography, preparative TLC, and Sephadex LH-20 column chromatography. Characteristics of the substance analyzed by UV scanning analysis, $^1H$ and $^{13}C$ NMR spectra suggested that the substance belongs to the chlorophyll derivatives-like group. The $IC_{50}$ value of the chlorophyll derivative (Cp-D) determined by MTT assay was $15\mu\textrm{g}/ml$ for Jurkat, $10\mu\textrm{g}/ml$ for U937, and $11.4\mu\textrm{g}/ml$ for HL-60m and was more toxic to these leukemias than to solid tumors or normal fibroblast. In order to elucidate cellular mechanisms underlying the cytotoxicity, the effect of the Cp-D on Jurkat T cells was investigated. When cells were treated with the Cp-D at a concentration of $15\mu\textrm{g}/ml$, [3H]thymidine incorporation declined rapidly and wa undetectable in 1h. However, no significant changes were made in the cell cycle distribution of the cells by 24h. The sub-Gl peak representing apoptotic cells began to be detectable in 36h, at which time apoptotic DNA fragmentation was also detected on agarose gel electrophoresis, demonstrating that the cytotoxic effect of the Cp-D is attributable to the induced apoptosis. Under the same conditions, although the protein level of cyclin-dependent kinases such as cdc4, csk6, cdk2, and cdc2 was not significantly changed until 24h, the kinase activity of all c안 rapidly declined and reached a minimum level within 1-6h and then recovered to the initial level by 12h and sustained until 24h. These results suggest that inactivation of cdks at an inappropriate time during the cell cycle progression in jurkat T cells following a treatment with the Cp-D leads to induction of apoptotic cell death.

  • PDF

Methylation of the Mouse Dlx5 and Osx Gene Promoters Regulates Cell Type-specific Gene Expression

  • Lee, Ji Yun;Lee, Yu Mi;Kim, Mi Jin;Choi, Je Yong;Park, Eui Kyun;Kim, Shin Yoon;Lee, Sam Poong;Yang, Jae Sup;Kim, Dong Sun
    • Molecules and Cells
    • /
    • v.22 no.2
    • /
    • pp.182-188
    • /
    • 2006
  • Dlx5 and Osx are master regulatory proteins essential for initiating the cascade leading to osteoblast differentiation in mammals, but the mechanism of osteoblast-specific expression is not fully understood. DNA methylation at CpG sequences is involved in tissue and cell type-specific gene expression. We investigated the methylation status of Dlx5 and Osx in osteogenic and nonosteogenic cell lines by methylationspecific PCR (MSP). The CpG dinucleotides of the Dlx5 and Osx promoter regions were unmethylated in osteogenic cell lines transcribing these genes but methylated in nonosteogenic cell lines. Treatment of C2C12 cells with 5-AzadC induced dose- and timedependent expression of Dlx5 and Osx mRNA by demethylating the corresponding promoters. Furthermore the mRNAs for the osteoblast markers ALP and OC, which were undetectable in untreated cells, gradually increased after 5-AzadC treatment. In addition, BMP-2 stimulation induced Dlx5 expression by hypomethylating its promoter. These findings suggest that DNA methylation plays an important role in cell type-specific expression of Dlx5 and Osx.