• Title/Summary/Keyword: Coverage Simulation

Search Result 466, Processing Time 0.032 seconds

The Design of a Broadband E-plane H Sectoral Horn Phased Array Antenna Using Mutual Coupling (상호 결합을 이용한 광대역 E-면 H 섹터 혼 위상 배열 안테나 설계)

  • Lee, Cheol-Soo;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.620-628
    • /
    • 2007
  • An H-sector horn antenna has a constant beam coverage characteristic and it can be useful for application to a wide band phased array antenna system. In this paper, we designed a broadband E-plane H-sector horn phased-array antenna, which has a 3:1 bandwidth and ${\pm}60^{\circ}$ beam steering capability. An H-sector hem antenna was designed to have $30{\sim}50^{\circ}$ half-power beam width in the principal H-plane. The active reflection coefficient including mutual coupling was calculated using a waveguide simulator, and the active reflection characteristic was improved by mutual coupling over wide frequency range. Using these results, an $8{\times}1$ H-sector phased array antenna was fabricated. The measurement results for the half-power beam width in the principal H-plane and the active reflection coefficient showed a good agreement with the simulation results. The peak-value pattern in the steered radiation beams also agreed well with the active element pattern. The measured active reflection coefficients within the beam steering range are mostly less than 0.3 over the 3:1 frequency range.

An Analysis of Radio Frequency Interferences in L-Band SAR Images (L-대역 SAR 영상에서의 간섭 신호 영향 분석)

  • Lee, Seul-Ki;Lee, Woo-Kyung;Lee, Jae-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.12
    • /
    • pp.1388-1398
    • /
    • 2012
  • SAR(Synthetic Aperture Radar) systems can provide images of wide coverage in day, night, and all-weather conditions. However wideband SAR systems are known to be vulnerable to interferences from other devices operating at in-band or adjacent spectrums and this may lead to image corruptions. In this paper, a SAR point target simulator is developed that provides performance analysis on image distortion caused by interferences from other devices. Interference signals are generated based on the experimental data observed from acquired SAR raw data. Simulation results include typical SAR performance measures such as spatial resolution, peak to sidelobe ratio and integrated sidelobe ratio. Finally, SAR target simulations are performed and shown to correspond to the image corruptions found in real SAR missions affected by RF interferences.

SPACEBORNE TOPS SAR SYSTEM MODELING AND PERFORMANCE ANALYSIS (TOPS 위성 SAR 모드 시스템 구현 및 성능 평가 연구)

  • Kang, Seo-Li;Song, Jeong-Hwan;Kim, Bum-Seung;Kim, Hyeon-Cheol;Lee, Woo-Kyung
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.74-79
    • /
    • 2014
  • Conventional ScanSAR mode has been adopted in Envisat or Radarsat and played an important role to acquire wide swath SAR images for environmental surveillance. However, it suffers from the undesirable scalloping effect caused by non-homogeneity of antenna pattern while the image resolution is sacrificed. In recent years, TOPS mode has been suggested and put into use to overcome the disadvantages of the conventional scanning mode. Although TOPS mode is able to produce wide-swath SAR image in a short time interval, it demands highly complicated system design knowledge. In this paper, we present the operation principle of TOPS mode and a full SAR simulation is performed to generate TOPS SAR raw data. Azimuth antenna pattern is modified during TOPS mode operation and it is shown that the undesired scalloping effect is suppressed in the generated SAR image.

Fatigue Life Analysis of Rolling Contact Model Considering Stress Gradient Effect (응력 구배 효과를 고려한 구름 접촉 모델의 피로수명해석)

  • Cho, InJe;Yu, YongHun;Lee, Bora;Cho, YongJoo
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.272-280
    • /
    • 2015
  • Recently, Luu suggested fatigue life equation that uses every term of the Crossland equation with stress gradient effect. Luu’s model, however, has a limit of being unable to coverage small radii that are less than a specified length. Furthermore, rolling model has a very small contact area compared to the rolling element size, and fatigue failure occurs on the small radius such as surface asperity by cyclic loading. Therefore, it is necessary to modify fatigue life equation in order to enable fatigue analysis for a small radius. In this paper, the fatigue life considering a stress gradient effect in rolling contact was obtained using Luu’s modified equation. Fatigue analysis was performed to study the effect of stress gradient on the fatigue life using newly adopted equation and to compare the results with pervious models. In order to do this, a series of simulation such as surface stress analysis, subsurface stress analysis, and fatigue analysis are conducted for two rolling balls of same size that contact each other. Through such a series of processes, the fatigue life can be calculated and equation that is proposed in this paper evaluates the fatigue life in case the contact area is small.

Cooperative Communications Based on Virtual MIMO Transmission for Vehicles (네트워크 코딩을 활용한 가상 다중 안테나 시스템 기반 차량용 협력 통신 기술)

  • Kim, Ilhwan;Kim, Junghyun;Ji, Soonbae;You, Cheolwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.17-22
    • /
    • 2015
  • In this paper, we propose a cooperative vehicle communication scheme for high transmission efficiency and coverage extension under multipath fading environment of moving vehicle networks. The proposed scheme uses a Network coding scheme for improvement of receiving performance by using virtual Multiple-Input Multiple-Output(MIMO) transmit diversity. Simulation results have shown that the proposed scheme also provides alleviated Inter Symbol Interference(ISI) and Inter Channel Interference(ICI) as well as Signal-to-Noise Ratio(SNR) improvement and improve 3dB compared to the conventional scheme, since it can utilize the good properties of spatial diversity and coding gain by using virtual MIMO configuration. In this paper, we propose simulations of Ultra-Wideband(UWB) communication system to show validity by using the MATLAB.

A Comparison between Three Dimensional Radiation Therapy and Intensity Modulated Radiation Therapy on Prostate Cancer (전립샘암의 방사선 치료 시 입체조형치료법와 세기조절방사선 치료법의 비교)

  • Kim, YoungJae;Lee, JaeSub;Hong, Seongill;Ko, HyeJin
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.6
    • /
    • pp.409-414
    • /
    • 2013
  • In this study, we evaluated to the superiority of treatment techniques on prostate cancer, apply to each other treatment techniques-3D conformal therapy versus IMRT-using dose distribution and dose coverages. Obtained 10 patients CT simulation, divided tumor volume and critical organs. Prescription dose was 80 Gy on tumor volume and Each of plans was set by two different plans. As a result, Dose coverage was superior to IMRT. The IMRT's tumor absorbed dose(100.2%) was close to prescription doses. Normal tissue(bladder, rectal, bowel Lt Rt fumoral head) absorbed dose rate was superior. In other words, the radiation therapy of prostate cancer with intensity modulated radiation therapy was better than conformal radiation therapy on dose.

Neighbor-Based Probabilistic Rebroadcast Routing Protocol for Reducing Routing Overhead in Mobile Ad Hoc Networks

  • Harum, Norharyati;Hamid, Erman;Bahaman, Nazrulazhar;Ariff, Nor Azman Mat;Mas'ud, Mohd Zaki
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.1-8
    • /
    • 2021
  • In Mobile Ad-Hoc Network (MANET) Application, routing protocol is essential to ensure successful data transmission to all nodes. Ad-hoc On-demand Distance Vector (AODV) Protocol is a reactive routing protocol that is mostly used in MANET applications. However, the protocol causes Route Request (RREQ) message flooding issue due to the broadcasting method at the route request stage to find a path to a particular destination, where the RREQ will be rebroadcast if no Request Response (RREP) message is received. A scalable neighbor-based routing (SNBR) protocol was then proposed to overcome the issue. In the SNBR protocol, the RREQ message is only rebroadcast if the number of neighbor nodes less than a certain fix number, known as drop factor. However, since a network always have a dynamic characteristic with a dynamic number of neighbor nodes, the fix drop factor in SNBR protocol could not provide an optimal flooding problem solution in a low dense network environment, where the RREQ message is continuously rebroadcast RREQ message until reach the fix drop factor. To overcome this problem, a new broadcasting method as Dynamic SNBR (DSNBR) is proposed, where the drop factor is determined based on current number of neighbor nodes. This method rebroadcast the extra RREQ messages based on the determined dynamic drop factor. The performance of the proposed DSNBR is evaluated using NS2 and compared with the performance of the existing protocol; AODV and SNBR. Simulation results show that the new routing protocol reduces the routing request overhead, energy consumption, MAC Collision and enhances end-to-end delay, network coverage ratio as a result of reducing the extra route request messages.

Resource Allocation for D2D Communication in Cellular Networks Based on Stochastic Geometry and Graph-coloring Theory

  • Xu, Fangmin;Zou, Pengkai;Wang, Haiquan;Cao, Haiyan;Fang, Xin;Hu, Zhirui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4946-4960
    • /
    • 2020
  • In a device-to-device (D2D) underlaid cellular network, there exist two types of co-channel interference. One type is inter-layer interference caused by spectrum reuse between D2D transmitters and cellular users (CUEs). Another type is intra-layer interference caused by spectrum sharing among D2D pairs. To mitigate the inter-layer interference, we first derive the interference limited area (ILA) to protect the coverage probability of cellular users by modeling D2D users' location as a Poisson point process, where a D2D transmitter is allowed to reuse the spectrum of the CUE only if the D2D transmitter is outside the ILA of the CUE. To coordinate the intra-layer interference, the spectrum sharing criterion of D2D pairs is derived based on the (signal-to-interference ratio) SIR requirement of D2D communication. Based on this criterion, D2D pairs are allowed to share the spectrum when one D2D pair is far from another sufficiently. Furthermore, to maximize the energy efficiency of the system, a resource allocation scheme is proposed according to weighted graph coloring theory and the proposed ILA restriction. Simulation results show that our proposed scheme provides significant performance gains over the conventional scheme and the random allocation scheme.

A Study on Dynamic Channel Assignment to Increase Uplink Performance in Ultra Dense Networks (초고밀도 네트워크에서 상향링크 성능향상을 위한 유동적 채널할당 연구)

  • Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.25-31
    • /
    • 2022
  • In ultra dense networks (UDNs), macro user equipments (MUEs) have significant interference from small-cell access points (SAPs) since a number of SAPs are deployed in the coverage of macro base stations of 5G mobile communication systems. In this paper, we propose a dynamic channel assignment scheme to increase the performance of MUEs for the uplink of UDNs even though the number of SAPs is increased. The target of the proposed dynamic channel assignment scheme is that the signal-to-interference and noise ratio (SINR) of MUEs is above a given SINR threshold assigning different subchannels to SUEs from those of MUEs. Simulation results show that the proposed dynamic channel assignment scheme outperforms others in terms of the mean MUE capacity even though the mean SUE capacity is decreased a little lower.

Research on Relay Selection Technology Based on Regular Hexagon Region Segmentation in C-V2X

  • Li, Zhigang;Yue, Xinan;Wang, Xin;Li, Baozhu;Huang, Daoying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3138-3151
    • /
    • 2022
  • Traffic safety and congestion are becoming more and more serious, especially the frequent occurrence of traffic accidents, which have caused great casualties and economic losses. Cellular Vehicle to Everything (C-V2X) can assist in safe driving and improve traffic efficiency through real-time information sharing and communication between vehicles. All vehicles communicate directly with Base Stations (BS), which will increase the base station load. And when the communicating vehicles are too far apart, too fast or there are obstacles in the communication path, the communication link can be unstable or even interrupted. Therefore, choosing an effective and reliable multi-hop relay-assisted Vehicle to Vehicle (V2V) communication can not only reduce the base station load and improve the system throughput but also expand the base station coverage and improve the communication quality of edge vehicles. Therefore, a communication area division scheme based on regular hexagon segmentation technology is proposed, a relay-assisted V2V communication mechanism is designed for the divided communication areas, and an efficient communication link is constructed by selecting the best relay node. Simulation results show that the scheme can improve the throughput of the system by nearly 55% and enhance the robustness of the V2V communication link.