• Title/Summary/Keyword: Coverage Redundancy

Search Result 23, Processing Time 0.02 seconds

The Way to Ensure Safety of Communication by Means of Redundancy of Wireless Communication Coverage in RF-CBTC System (RF-CBTC 시스템에서 무선통신 커버리지 이중화를 통한 통신 안정성 확보)

  • Park, Ju-Yeon;Yang, Hee-Joon;Kang, Deok-Won;Lee, Jong-Seong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3104-3110
    • /
    • 2011
  • This paper describes how to ensure safety of train by guaranteeing stable and continuous communication in RF-CBTC. CBTC System uses the wireless communication between onboard and wayside so that safety of wireless communication is the most important. Losing the position of train causes vital problem of train service. By losing the position of train, the other trains are blocked in the block and the train move by emergency mode so headway and safety cannot guaranteed. Therefore, safety is ensured by redundancy of wireless equipment. One of the ways to make redundancy is redundancy of equipment. However, the redundancy of equipment spends a lot of money to avoid interference in limited place like underground. Continuous communication is guaranteed by means of redundancy of wireless communication coverage to solve the problems even though one of the equipment is broken.

  • PDF

A Sensing Radius Intersection Based Coverage Hole Recovery Method in Wireless Sensor Network (센서 네트워크에서 센싱 반경 교차점 기반 홀 복구 기법)

  • Wu, Mary
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.431-439
    • /
    • 2021
  • Since the sensor nodes are randomly arranged in the region of interest, it may happen that the sensor network area is separated or there is no sensor node in some area. In addition, after the sensor nodes are deployed in the sensor network, a coverage hole may occur due to the exhaustion of energy or physical destruction of the sensor nodes. The coverage hole can greatly affect the overall performance of the sensor network, such as reducing the data reliability of the sensor network, changing the network topology, disconnecting the data link, and worsening the transmission load. Therefore, sensor network coverage hole recovery has been studied. Existing coverage hole recovery studies present very complex geometric methods and procedures in the two-step process of finding a coverage hole and recovering a coverage hole. This study proposes a method for discovering and recovering a coverage hole in a sensor network, discovering that the sensor node is a boundary node by itself, and determining the location of a mobile node to be added. The proposed method is expected to have better efficiency in terms of complexity and message transmission compared to previous methods.

EBKCCA: A Novel Energy Balanced k-Coverage Control Algorithm Based on Probability Model in Wireless Sensor Networks

  • Sun, Zeyu;Zhang, Yongsheng;Xing, Xiaofei;Song, Houbing;Wang, Huihui;Cao, Yangjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3621-3640
    • /
    • 2016
  • In the process of k-coverage of the target node, there will be a lot of data redundancy forcing the phenomenon of congestion which reduces network communication capability and coverage, and accelerates network energy consumption. Therefore, this paper proposes a novel energy balanced k-coverage control algorithm based on probability model (EBKCCA). The algorithm constructs the coverage network model by using the positional relationship between the nodes. By analyzing the network model, the coverage expected value of nodes and the minimum number of nodes in the monitoring area are given. In terms of energy consumption, this paper gives the proportion of energy conversion functions between working nodes and neighboring nodes. By using the function proportional to schedule low energy nodes, we achieve the energy balance of the whole network and optimizing network resources. The last simulation experiments indicate that this algorithm can not only improve the quality of network coverage, but also completely inhibit the rapid energy consumption of node, and extend the network lifetime.

Cellular-Automata Based Node Scheduling Scheme for Wireless Sensor Networks (무선 센서 네트워크를 위한 셀룰러 오토마타 기반의 노드 스케줄링 제어)

  • Byun, Heejung;Shon, Sugook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.10
    • /
    • pp.708-714
    • /
    • 2014
  • Wireless sensor networks (WSNs) generally consist of densely deployed sensor nodes that depend on batteries for energy. Having a large number of densely deployed sensor nodes causes energy waste and high redundancy in sensor data transmissions. The problems of power limitation and high redundancy in sensing coverage can be solved by appropriate scheduling of node activity among sensor nodes. In this paper, we propose a cellular automata based node scheduling algorithm for prolonging network lifetime with a balance of energy savings among nodes while achieving high coverage quality. Based on a cellular automata framework, we propose a new mathematical model for the node scheduling algorithm. The proposed algorithm uses local interaction based on environmental state signaling for making scheduling decisions. We analyze the system behavior and derive steady states of the proposed system. Simulation results show that the proposed algorithm outperforms existing protocols by providing energy balance with significant energy savings while maintaining sensing coverage quality.

Impact of Sensing Models on Probabilistic Blanket Coverage in Wireless Sensor Network (무선 센서 네트워크에서 Probabilistic Blanket Coverage에 대한 센싱 모델의 영향)

  • Pudasaini, Subodh;Kang, Moon-Soo;Shin, Seok-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.697-705
    • /
    • 2010
  • In Wireless Sensor Networks (WSNs), blanket (area) coverage analysis is generally carried to find the minimum number of active sensor nodes required to cover a monitoring interest area with the desired fractional coverage-threshold. Normally, the coverage analysis is performed using the stochastic geometry as a tool. The major component of such coverage analysis is the assumed sensing model. Hence, the accuracy of such analysis depends on the underlying assumption of the sensing model: how well the assumed sensing model characterizes the real sensing phenomenon. In this paper, we review the coverage analysis for different deterministic and probabilistic sensing models like Boolean and Shadow-fading model; and extend the analysis for Exponential and hybrid Boolean-Exponential model. From the analytical performance comparison, we demonstrate the redundancy (in terms of number of sensors) that could be resulted due to the coverage analysis based on the detection capability mal-characterizing sensing models.

Rotational Wireless Video Sensor Networks with Obstacle Avoidance Capability for Improving Disaster Area Coverage

  • Bendimerad, Nawel;Kechar, Bouabdellah
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.509-527
    • /
    • 2015
  • Wireless Video Sensor Networks (WVSNs) have become a leading solution in many important applications, such as disaster recovery. By using WVSNs in disaster scenarios, the main goal is achieving a successful immediate response including search, location, and rescue operations. The achievement of such an objective in the presence of obstacles and the risk of sensor damage being caused by disasters is a challenging task. In this paper, we propose a fault tolerance model of WVSN for efficient post-disaster management in order to assist rescue and preparedness operations. To get an overview of the monitored area, we used video sensors with a rotation capability that enables them to switch to the best direction for getting better multimedia coverage of the disaster area, while minimizing the effect of occlusions. By constructing different cover sets based on the field of view redundancy, we can provide a robust fault tolerance to the network. We demonstrate by simulating the benefits of our proposal in terms of reliability and high coverage.

Probabilistic Broadcasting Based on Selfishness and Additional Coverage in MANETs

  • Kim, Jae-Soo;Kim, Jeong-Hong
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.4
    • /
    • pp.329-336
    • /
    • 2012
  • For designing broadcast protocols in mobile ad hoc networks (MANETs), one of the important goals is to reduce the rebroadcast packets redundancy while reaching all the nodes in network. In this paper, we propose a probabilistic broadcasting mechanism based on selfishness and additional coverage in MANETs. Our approach dynamically adjusts the rebroadcast probability according to the extra covered area and number of neighbor nodes. By these two factors, mobile hosts can be classified into three groups: normal, low selfishness, and high selfishness groups. The nodes in the normal group forward packets for other nodes with high probability, whereas the nodes in the low selfishness group rebroadcast packets with low probability and the nodes in the high selfishness group do not rebroadcast packets. We compared our approach with simple flooding and the fixed probabilistic approach. The simulation results show that the proposed schemes can significantly reduce the number of retransmissions by up to 40% compared simple flooding and fixed probabilistic scheme without significant reduction in the network reachability and end-to-end packet delay.

Epiphytic Lichens on Chery trees in Korea. (벗나무에 부착된 지의식물의 생태적 연구)

  • Park Seung Tai
    • The Korean Journal of Ecology
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1978
  • Epiphytic lichens were sampled quantitatively on the cherry trees (Prunus serrulata) at Jeonju and Hadong along both north and south exposures of tat trees. Coverage of lichens was determinated for each species by 10*20cm quadrat. Lichen species diversities such as total diversity (D), mean diversity (D), Shannon diversity (D') and redundancy (R) were estimated according to Brillouin and Shannon equation. The importance value of lichen species was meassured by niche preemption model, The importance value transformed into some fraction k of the niche space. The value of k was compared with aggregation of lichens communities in to areas. The ten most important awariensis, Parmelia incurva, Parmelia crinita, Dirinaria applanta, Parmelia wallichiana, Parmelia austrosinensis and Cetraria platyphylla. The mean coverage epiphytic lichens on north side of tree was higher than of south side in two areas. The species diversities of epiphytic lichen of two areas shows that a change in the value of D' along vertical was not paralled with the D and R. In Kumsan-sa, D, D and D' increased upward along the tree of north exposure, but did not follow this trend in south, However in Sangge-sa, D, D and D' of both sides increased.

  • PDF

Autonomous Broadcast Pruning Scheme using Coverage Estimation in Wireless Ad Hoc Network (무선 Ad Hoc 망에서 영역 추정을 통한 ABP 브로드캐스트 기법)

  • Bae Ki chan;Kim Nam gi;Yoon Hyun soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4B
    • /
    • pp.170-177
    • /
    • 2005
  • Due to the redundant rebroadcast packets, network-wide broadcasting is a costly operation in wireless mobile ad hoc networks. To reduce this redundancy, most of previous approaches implicitly or explicitly require periodic refreshing of neighborhood information which continuously imposes additional broadcast overheads. In this paper, we propose a practical broadcast pruning scheme based on the local prediction of a remained coverage area. As the proposed scheme uses only information available in the on-going broadcast process, it can minimize the overheads prevalent in previous approaches.

An optimized deployment strategy of smart smoke sensors in a large space

  • Liu, Pingshan;Fang, Junli;Huang, Hongjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3544-3564
    • /
    • 2022
  • With the development of the NB-IoT (Narrow band Internet of Things) and smart cities, coupled with the emergence of smart smoke sensors, new requirements and issues have been introduced to study on the deployment of sensors in large spaces. Previous research mainly focuses on the optimization of wireless sensors in some monitoring environments, including three-dimensional terrain or underwater space. There are relatively few studies on the optimization deployment problem of smart smoke sensors, and leaving large spaces with obstacles such as libraries out of consideration. This paper mainly studies the deployment issue of smart smoke sensors in large spaces by considering the fire probability of fire areas and the obstacles in a monitoring area. To cope with the problems of coverage blind areas and coverage redundancy when sensors are deployed randomly in large spaces, we proposed an optimized deployment strategy of smart smoke sensors based on the PSO (Particle Swarm Optimization) algorithm. The deployment problem is transformed into a multi-objective optimization problem with many constraints of fire probability and barriers, while minimizing the deployment cost and maximizing the coverage accuracy. In this regard, we describe the structure model in large space and a coverage model firstly, then a mathematical model containing two objective functions is established. Finally, a deployment strategy based on PSO algorithm is designed, and the performance of the deployment strategy is verified by a number of simulation experiments. The obtained experimental and numerical results demonstrates that our proposed strategy can obtain better performance than uniform deployment strategies in terms of all the objectives concerned, further demonstrates the effectiveness of our strategy. Additionally, the strategy we proposed also provides theoretical guidance and a practical basis for fire emergency management and other departments to better deploy smart smoke sensors in a large space.