• Title/Summary/Keyword: Cover concrete

Search Result 577, Processing Time 0.029 seconds

A Study on the Allowable Crack Width of RC Beam with Corrosive Environment (염해환경에서의 RC보의 허용 균열폭 산정에 관한 연구)

  • Kim, Dongbaek;Kwon, Soondong;An, Kwanghee
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.2
    • /
    • pp.253-261
    • /
    • 2015
  • Deterioration of reinforced concrete structures in corrosive environment is tend to be accelerated due to ingress of aggressive ion such as chloride ion. Chloride-induced corrosion is affected by various factors such as cover concrete qualities, width of existing cracks, and cover depth of concrete. However, the allowable crack width of RC structure in design code does not consider the concrete material properties and conditions of construction except the cover depth. In this paper, an equation for allowable crack width is proposed to consider the cover concrete quality, crack width, and cover depth. Crack width, cover depth, and water-cement ratio of concrete are selected as influencing factors on corrosion of reinforcement for rapid chloride tests. From test results, the relationships between the factors and corrosion are derived. Finally, the equation for allowable crack width is derived in terms of concrete compressive strength and cover depth. The presented equation is verified by comparative calculations with design code variables.

Repid Corrosion Test on Reinforcing Steels in Chloride-Penetrating Concrete Structures with Various Crack Patterns (균열특성에 따른 콘크리트 구조물의 염분침투에 관한 실험적 연구)

  • 이상국;정영수;문홍식;안태송;유환구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.345-350
    • /
    • 2001
  • Reinforced concrete is, in general, known as a high durability material due to a strong alkalinity of cement. Probable concrete cracks could incur steel corrosion of RC structures and then could easily deteriorate the concrete durability, which can be fully secured by a systematic quality control for the construction of concrete structures. For the corrosion protection of reinforcing steels in concrete, however, current design specifications of concrete cover depth do not in-depth consider the effect of the cracks as well as the chloride content of RC structures. Therefore, appropriate provisions for concrete cover depth should be coded by considering the influence of concrete cracks on the corrosion of reinforcing steels. The objective of this research is to investigate pertinent cover depth, which can prohibit rebar corrosion, on the basis of experimental corrosion measurements of reinforcing steels on crack characteristics such as the width, depth and frequency of concrete cracks.

  • PDF

Effects of tensile softening on the cracking resistance of FRP reinforced concrete under thermal loads

  • Panedpojaman, Pattamad;Pothisiri, Thanyawat
    • Structural Engineering and Mechanics
    • /
    • v.36 no.4
    • /
    • pp.447-461
    • /
    • 2010
  • Fiber reinforced polymer (FRP) bars have been widely used as reinforcement for concrete structures. However, under elevated temperatures, the difference between the transverse coefficients of thermal expansion of FRP rebars and concrete may cause the splitting cracks of the concrete cover. As a result, the bonding of FRP-reinforced concrete may not sustain its function to transfer load between the FRP rebar and the surrounding concrete. The current study investigates the cracking resistance of FRP reinforced concrete against the thermal expansion based on a mechanical model that accounts for the tensile softening behavior of concrete. To evaluate the efficacy of the proposed model, the critical temperature increments at which the splitting failure of the concrete cover occurs and the internal crack radii estimated are compared with the results obtained from the previous studies. Simplified equations for estimating the critical temperature increments and the minimum concrete cover required to prevent concrete splitting failure for a designated temperature increment are also derived for design purpose.

Experimental Study on the Bond Properties between GFRP Reinforcements and Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트와 GFRP 보강근의 부착특성에 관한 실험적 연구)

  • Choi, Yun-Cheul
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.573-581
    • /
    • 2013
  • In this paper, an experimental investigation of bond properties between steel fiber reinforced concrete and glass fiber reinforced polymer reinforcements was performed. The experimental variables were diameter of reinforcements, volume fraction of steel fiber, cover thickness and compressive strength of concrete. Bond failure mainly occurred with splitting of concrete cover. Main factor for splitting of concrete is tension force occurred by the displacement difference between reinforcements and concrete. Therefore, in order to prevent the bond failure between reinforcements and concrete, capacity of tensile strength of concrete cover should be upgraded. As a results of test, volume fraction of steel fiber significantly increases the bond strength. Cover thickness changes the failure mode. Diameter of reinforcements also changes the failure mode. Generally, diameter of reinforcement also affects the bond properties but this effect is not significant as volume fraction of fiber. Increase of compressive strength increases the bond strength between concrete and reinforcement because compressive strength of concrete directly affects the tensile strength of concrete.

Estimation of Concrete Cover Failure Time Considering the Corrosion Rate in Reinforced Concrete Structures (철근 부식속도 예측식을 이용한 철근 피복 파괴 시간 추정)

  • Jang, Bong-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.233-238
    • /
    • 2006
  • In lifetime estimation, the FEM analysis method is proposed for predicting corrosion failure time of concrete structures exposed to sea-water. This study shows that the corrosion rate of rebar in artificial pore solution can be transferred to the corrosion rate of rebar in concrete using the relationship between pore volume and concrete volume by Jennings' model. And this study considered the pitting corrosion effects of reinforcement bar on corrosion failure analysis, rebar size to cover depth and nonlinear crack analysis. These analysis results have good accordance with the experimental results of Williamson's work. This methodology can be applied to lifetime prediction procedure of reinforced concrete structures and also gives more reasonable results of concrete cover failure time estimation of reinforced concrete structures exposed to sea-water.

Design Parameters of Confinement on Bond Strength of Reinforcing Steel to Concrete (콘크리트와 철근의 부착강도에 대한 횡구속 설계변수)

  • 김상준;이재열;이웅세;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.653-658
    • /
    • 1999
  • Bond between reinforcing bars and the surrounding concrete is supposed to safely transfer load in the design process of reinforced concrete structures. Bond failure of reinforcing bars generally take place by splitting of concrete cover as bond force between concrete and reinforcing bars exceeds the resistance by the confinement of the concrete cover and transverse reinforcement. Confinement, concrete cover and transverse reinforcement, on bond are the key factor of current provision to determine development length of reinforcing bars to concrete. In this study, previous available data are analyzed with respect to the current provisions for development and splice of reinforcement. From this study, the new provision for the design are proposed, which will be efficient and effective with some specific limit value.

  • PDF

A Fundamental Study on the Influence of Fresh Concrete Quality Properties due to the Cover of Concrete Mixer Truck (콘크리트 믹서 트럭 덮개의 유무가 콘크리트 품질 특성에 미치는 영향에 관한 기초연구)

  • Chae, Young-Suk;Lim, Byung-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.198-204
    • /
    • 2010
  • The cover of truck agitator give in a part to prevent the lower flowing of fresh concrete when the concrete are transported from the ready mixed concrete plant to the construction field. As a result of the question data, it show up a dirty image to the general civil society. Due to the above image, it is predicted to affect the image of the construction company, so we did the site experiment of the flowing, the amounts of air, the temperature change of concrete with the concrete left in the site, to find out the usefulness. Also, for the comparing with this, we got the result by doing the inner experiment with the same condition. As the result of the experiment, the cover of truck agitator affect little to the reduction of slump. The change of the air amount, regardless of the existence of cover, was not effected much in proper level until 60minutes. In addition, The compression strength was proper to the goal design strength until 90minutes regardless of the cover of truck agitator exist or not exist.

Mesoscale model for cracking of concrete cover induced by reinforcement corrosion

  • Chen, Junyu;Zhang, Weiping;Gu, Xianglin
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.53-62
    • /
    • 2018
  • Cracking of concrete cover induced by reinforcement corrosion is a critical issue for life-cycle design and maintenance of reinforced concrete structures. However, the critical degree of corrosion, based on when the concrete surface cracks, is usually hard to predict accurately due to the heterogeneity inherent in concrete. To investigate the influence of concrete heterogeneity, a modified rigid-body-spring model, which could generate concrete sections with randomly distributed coarse aggregates, has been developed to study the corrosion-induced cracking process of the concrete cover and the corresponding critical degree of corrosion. In this model, concrete is assumed to be a three-phase composite composed of coarse aggregate, mortar and an interfacial transition zone (ITZ), and the uniform corrosion of a steel bar is simulated by applying uniform radial displacement. Once the relationship between radial displacement and degree of corrosion is derived, the critical degree of corrosion can be obtained. The mesoscale model demonstrated its validity as it predicted the critical degree of corrosion and cracking patterns in good agreement with analytical solutions and experimental results. The model demonstrates how the random distribution of coarse aggregate results in a variation of critical degrees of corrosion, which follows a normal distribution. A parametric study was conducted, which indicates that both the mean and variation of critical degree of corrosion increased with the increase of concrete cover thickness, coarse aggregates volume fraction and decrease of coarse aggregate size. In addition, as tensile strength of concrete increased, the average critical degree of corrosion increased while its variation almost remained unchanged.

Open-slip coupled model for simulating three-dimensional bond behavior of reinforcing bars in concrete

  • Shang, Feng;An, Xuhui;Kawai, Seji;Mishima, Tetsuya
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.403-419
    • /
    • 2010
  • The bond mechanism for reinforcing bars in concrete is equivalent to the normal contact and friction between the inclined ribs and the surrounding concrete. Based on the contact density model for the computation of shear transfer across cracks, an open-slip coupled model was developed for simulating three-dimensional bond behavior for reinforcing bars in concrete. A parameter study was performed and verified by simulating pull-out experiments of extremely different boundary conditions: short bar embedment with a huge concrete cover, extremely long bar embedment with a huge concrete cover, embedded aluminum bar and short bar embedded length with an insufficient concrete cover. The bar strain effect and splitting of the concrete cover on a local bond can be explained by finite element (FE) analysis. The analysis shows that the strain effect results from a large local slip and the splitting effect of a large opening of the interface. Finally, the sensitivity of rebar geometry was also checked by FE analysis and implies that the open-slip coupled model can be extended to the case of plain bar.

Fuzzy Inference Based Design for Durability of Reinforced Concrete Structure in Chloride-Induced Corrosion Environment

  • Do Jeong-Yun;Song Hun;Soh Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.157-166
    • /
    • 2005
  • This article involves architecting prototype-fuzzy expert system for designing the nominal cover thickness by means of fuzzy inference for quantitatively representing the environment affecting factor to reinforced concrete in chloride-induced corrosion environment. In this work, nominal cover thickness to reinforcement in concrete was determined by the sum of minimum cover thickness and tolerance to that defined from skill level, constructability and the significance of member. Several variables defining the quality of concrete and environment affecting factor (EAF) including relative humidity, temperature, cyclic wet and dry, and the distance from coast were treated as fuzzy variables. To qualify EAF the environment conditions of cycle degree of wet-dry, relative humidity, distance from coast and temperature were used as input variables. To determine the nominal cover thickness a qualified EAF, concrete grade, and water-cement ratio were used. The membership functions of each fuzzy variable were generated from the engineering knowledge and intuition based on some references as well as some international codes of practice.