• Title/Summary/Keyword: Cover Data

Search Result 1,999, Processing Time 0.024 seconds

Evaluation of SWAT Prediction Error according to Accuracy of Land Cover Map (토지피복도 정확도에 따른 SWAT 예측 오류 평가)

  • Heo, Sunggu;Kim, Kisung;Kim, Namwon;Ahn, Jaehun;Park, Sanghun;Yoo, Dongseon;Choi, JoongDae;Lim, Kyoungjae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.690-700
    • /
    • 2008
  • The Soil and Water Assessment Tool (SWAT) model users tend to use the readily available input dataset, such as the Ministry of Environment (MOE) land cover data ignoring temporal and spatial changes in land cover. The SWAT model was calibrated and validated with this land cover data. The EI values were 0.79 and 0.85 for streamflow calibration and validation, respectively. The EI were 0.79 and 0.86 for sediment calibration and validation, respectively. With newly prepared landcover dataset for the Doam-dam watershed, the SWAT model better predicts hydrologic and sediment behaviors. The number of HRUs with new land cover data increased by 70.2% compared with that with the MOE land cover, indicating better representation of small-sized agricultural field boundaries. The SWAT estimated annual average sediment yield with the MOE land cover data was 61.8 ton/ha/year for the Doam-dam watershed, while 36.2 ton/ha/year (70.7% difference) of annual sediment yield with new land cover data. Especially the most significant difference in estimated sediment yield was 548.0% for the subwatershed #2. Therefore it is recommended that one needs to carefully validate land cover for the study watershed for accurate hydrologic and sediment simulation with the SWAT model.

Changes of the Forest Types by Climate Changes using Satellite imagery and Forest Statistical Data: A case in the Chungnam Coastal Ares, Korea (위성영상과 임상통계를 이용한 충남해안지역의 기후변화에 따른 임상 변화)

  • Kim, Chansoo;Park, Ji-Hoon;Jang, Dong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.523-538
    • /
    • 2011
  • This study analyzes the changes in the surface area of each forest cover, based on temperature data analysis and satellite imagery as the basic methods for the impact assessment of climate change on regional units. Furthermore, future changes in the forest cover are predicted using the double exponential smoothing method. The results of the study have shown an overall increase in annual mean temperature in the studied region since 1990, and an especially increased rate in winter and autumn compared to other seasons. The multi-temporal analysis of the changes in the forest cover using satellite images showed a large decrease of coniferous forests, and a continual increase in deciduous forests and mixed forests. Such changes are attributed to the increase in annual mean temperature of the studied regions. The analysis of changes in the surface area of each forest cover using the statistical data displayed similar tendencies as that of the forest cover categorizing results from the satellite images. Accordingly, rapid changes in forest cover following the increase of temperature in the studied regions could be expected. The results of the study of the forest cover surface using the double exponential smoothing method predict a continual decrease in coniferous forests until 2050. On the contrary, deciduous forests and mixed forests are predicted to show continually increasing tendencies. Deciduous forests have been predicted to increase the most in the future. With these results, the data on forest cover can be usefully applied as the main index for climate change. Further qualitative results are expected to be deduced from these data in the future, compared to the analyses of the relationship between tree species of forest and climate factors.

A Study on reversible data hiding using the characteristics of image and solving CZP problem (영상의 특성을 효과적으로 이용하고 CZP 문제를 해결하여 영상에 가역적으로 데이터를 은닉하는 기법에 대한 연구)

  • Jung, Soo-Mok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.83-91
    • /
    • 2019
  • In this paper, we have effectively used the surface characteristics and local similarity existing in image, solved the problem that there is no CZP(Closest Zero point) that occurs in a very few images to hide secrete data into cover image by using histogram shift. By applying the proposed technique, it is possible to hide secrete data invisibly into the cover image, extract secrete data from the stego-image with no data loss, and completely restore the original cover image. It is impossible to know whether the secrete data is hidden in the stego-image because the stego-image constructed by applying the proposed technique has a good visual quality that can not distinguish the difference from the cover image. The proposed method is able to hide secrete data at various levels compared to conventional APD(Adjacent Pixel Difference) technique, and hide secrete data up to 25.1% more than APD in cover image.

An Adjustment for a Regional Incongruity in Global land Cover Map: case of Korea

  • Park Youn-Young;Han Kyung-Soo;Yeom Jong-Min;Suh Yong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.199-209
    • /
    • 2006
  • The Global Land Cover 2000 (GLC 200) project, as a most recent issue, is to provide for the year 2000 a harmonized land cover database over the whole globe. The classifications were performed according to continental or regional scales by corresponding organization using the data of VEGETATION sensor onboard the SPOT4 Satellite. Even if the global land cover classification for Asia provided by Chiba University showed a good accuracy in whole Asian area, some problems were detected in Korean region. Therefore, the construction of new land cover database over Korea is strongly required using more recent data set. The present study focuses on the development of a new upgraded land cover map at 1 km resolution over Korea considering the widely used K-means clustering, which is one of unsupervised classification technique using distance function for land surface pattern classification, and the principal components transformation. It is based on data sets from the Earth observing system SPOT4/VEGETATION. Newly classified land cover was compared with GLC 2000 for Korean peninsula to access how well classification performed using confusion matrix.

Automatic Extraction of Initial Training Data Using National Land Cover Map and Unsupervised Classification and Updating Land Cover Map (국가토지피복도와 무감독분류를 이용한 초기 훈련자료 자동추출과 토지피복지도 갱신)

  • Soungki, Lee;Seok Keun, Choi;Sintaek, Noh;Noyeol, Lim;Juweon, Choi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.267-275
    • /
    • 2015
  • Those land cover maps have widely been used in various fields, such as environmental studies, military strategies as well as in decision-makings. This study proposes a method to extract training data, automatically and classify the cover using ingle satellite images and national land cover maps, provided by the Ministry of Environment. For this purpose, as the initial training data, those three were used; the unsupervised classification, the ISODATA, and the existing land cover maps. The class was classified and named automatically using the class information in the existing land cover maps to overcome the difficulty in selecting classification by each class and in naming class by the unsupervised classification; so as achieve difficulty in selecting the training data in supervised classification. The extracted initial training data were utilized as the training data of MLC for the land cover classification of target satellite images, which increase the accuracy of unsupervised classification. Finally, the land cover maps could be extracted from updated training data that has been applied by an iterative method. Also, in order to reduce salt and pepper occurring in the pixel classification method, the MRF was applied in each repeated phase to enhance the accuracy of classification. It was verified quantitatively and visually that the proposed method could effectively generate the land cover maps.

Comparison of Three Land Cover Classification Algorithms -ISODATA, SMA, and SOM - for the Monitoring of North Korea with MODIS Multi-temporal Data

  • Kim, Do-Hyung;Jeong, Seung-Gyu;Park, Chong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.181-188
    • /
    • 2007
  • The objective of this research was to investigate the optimal land cover classification algorithm for the monitoring of North Korea with MODIS multi-temporal data based on monthly phenological characteristics. Three frequently used land cover classification algorithms, ISODATA1), SMA2), and SOM3) were employed for this study; the land cover categories were forest, grass, agricultural, wetland, barren, built-up, and water body. The outcomes of the study can be summarized as follows. First, the overall classification accuracy of ISODATA, SMA, and SOM was 69.03%, 64.28%, and 73.57%, respectively. Second, ISODATA and SMA resulted in a higher classification accuracy of forest and agricultural categories, but SOM performed better for the built-up area, bare soil, grassland, and water. A possible explanation for this difference would be related to the difference of sensitivity against the vegetation activity. This would be related to the capability of SOM to express all of their values without any loss of data by maintaining the topology between pixels of primitive data after classification, while ISODATA and SMA retain limited amount of data after normalization process. Third, we can conclude that SOM is the best algorithm for monitoring the land cover change of North Korea.

A Detail Survey of Horizontal Global Radiation and Cloud Cover for the Installation of Solar Photovoltaic System in Korea (국내 태양광시스템 설치를 위한 수평면 전일사량과 운량 정밀조사)

  • Jo, Dok-Ki;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.1-9
    • /
    • 2010
  • Since the horizontal global radiation and cloud cover are a main factor for designing any solar photovoltaic system, it is necessary to evaluate its characteristics all over the country. The work presented here are the investigation of horizontal global radiation and cloud cover in Korea. The data utilized in the investigation consist of horizontal global radiation and cloud cover collected for 27 years(1982. 12~2008. 12) at measuring stations across the country. The analysis shows that the annual-average daily horizontal global radiation is $3.61\;kWh/m^2$ and the annual-average daily cloud cover is 5.1 in Korea. We also constructed the contour map of cloud cover in Korea by interpolating actually measured data across the country.

Analysis of of Horizontal Global Radiation and Cloud Cover in Korea (국내 수평면 전일사량과 운량 분석)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.124-129
    • /
    • 2011
  • Since the horizontal global radiation and cloud cover are a main factor for designing any solar energy system, it is necessary to evaluate its characteristics all over the country. The work presented here are the investigation of horizontal global radiation and cloud cover in Korea. The data utilized in the investigation consist of horizontal global radiation and cloud cover collected for 27 years(1982.12~2008.12) at measuring stations across the country. The analysis shows that the annual-average daily horizontal global radiation is $3.61kWh/m^2$ and the annual-average daily cloud cover is 5.1 in Korea. We also constructed the contour map of cloud cover in Korea by interpolating actually measured data across the country.

  • PDF

Climatic Characteristics of the Northern Hemisphere Snow Cover observed by Satellite and its influence on the Monsoon

  • Yang, Xiangdong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1289-1291
    • /
    • 2003
  • Climatic characteristic and changes of snow cover over the Northern Hemisphere, Eurasian, North America and the Tibet Plateau are studied based on data of the Northern Hemisphere snow cover area observed by Satellite remote sensing from 1966 to 2003. Meanwhile, the seasons' distribution charts of the Asian snow cover are made, they provide the climatic background of snow cover. In addition, the influences of snow cover on the climate, especially on the monsoon are analysed briefly, and some significance results are concluded.

  • PDF

Updating Land Cover Classification Using Integration of Multi-Spectral and Temporal Remotely Sensed Data (다중분광 및 다중시기 영상자료 통합을 통한 토지피복분류 갱신)

  • Jang, Dong-Ho;Chung, Chang-Jo F.
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.786-803
    • /
    • 2004
  • These days, interests on land cover classification using not only multi-sensor data but also thematic GIS information, are increasing. Often, although we have useful GIS information for the classification, the traditional classification method like maximum likelihood estimation technique (MLE) does not allow us to use the information due to the fact that the MLE and the existing computer programs cannot handle GIS data properly. We proposed a new method for updating the image classification using multi-spectral and multi-temporal images. In this study, we have simultaneously extended the MLE to accommodate both multi-spectral images data and land cover data for land cover classification. In addition to the extended MLE method, we also have extended the empirical likelihood ratio estimation technique (LRE), which is one of non-parametric techniques, to handle simultaneously both multi-spectral images data and land cover data. The proposed procedures were evaluated using land cover map based on Landsat ETM+ images in the Anmyeon-do area in South Korea. As a result, the proposed methods showed considerable improvements in classification accuracy when compared with other single-spectral data. Improved classification images showed that the overall accuracy indicated an improvement in classification accuracy of $6.2\%$ when using MLE, and $9.2\%$ for the LRE, respectively. The case study also showed that the proposed methods enable the extraction of the area with land cover change. In conclusion, land cover classification produced through the combination of various GIS spatial data and multi-spectral images will be useful to involve complementary data to make more accurate decisions.