• 제목/요약/키워드: Coupling stiffness

검색결과 283건 처리시간 0.033초

Mechanical behavior investigation of steel connections using a modified component method

  • Chen, Shizhe;Pan, Jianrong;Yuan, Hui;Xie, Zhuangning;Wang, Zhan;Dong, Xian
    • Steel and Composite Structures
    • /
    • 제25권1호
    • /
    • pp.117-126
    • /
    • 2017
  • The component method is an analytical approach for investigating the moment-rotation relationship of steel connections. In this study, the component method was improved from two aspects: (i) load analysis of mechanical model; and (ii) combination of spring elements. An optimized component method with more reasonable component models, spring arrangement position, and boundary conditions was developed using finite element analysis. An experimental testing program in two major-axis and two minor-axis connections under symmetrically loading was carried out to verify this method. The initial rotational stiffness obtained from the optimized component method was consistent with the experimental results. It can be concluded that (i) The coupling stiffness between column and beam flanges significantly affects the effective height of the tensile-column web. (ii) The mechanical properties of the bending components were obtained using an equivalent t-stub model considering the bending capacity of bolts. (iii) Using the optimized mechanical components, the initial rotational stiffness was accurately calculated using the spring system. (iv) The characteristics of moment-rotation relationship for beam to column connections were effectively expressed by the SPRING element analysis model using ABAQUS. The calculations are simpler, and the results are accurate.

Stability Characteristics of Supercritical High-Pressure Turbines Depending on the Designs of Tilting Pad Journal Bearings

  • Lee, An Sung;Jang, Sun-Yong
    • Tribology and Lubricants
    • /
    • 제37권3호
    • /
    • pp.99-105
    • /
    • 2021
  • In this study, for a high-pressure turbine (HPT) of 800 MW class supercritical thermal-power plant, considering aerodynamic cross-coupling, we performed a rotordynamic logarithmic decrement (LogDec) stability analysis with various tilting pad journal bearing (TPJB) designs, which several steam turbine OEMs (original equipment manufacturers) currently apply in their supercritical and ultra-supercritical HPTs. We considered the following TPJB designs: 6-Pad load on pad (LOP)/load between pad (LBP), 5-Pad LOP/LBP, Hybrid 3-Pad LOP (lower 3-Pad tilting and upper 1-Pad fixed), and 5-Pad LBPs with the design variables of offset and preload. We used the API Level-I method for a LogDec stability analysis. Following results are summarized only in a standpoint of LogDec stability. The Hybrid 3-Pad LOP TPJBs most excellently outperform all the other TPJBs over nearly a full range of cross-coupled stiffness. In a high range of cross-coupled stiffness, both the 6-Pad LOP and 5-Pad LOP TPJBs may be recommended as a practical conservative bearing design approach for enhancing a rotordynamic stability of the HPT. As expected, in a high range of cross-coupled stiffness, the 6-Pad LBP TPJBs exhibit a better performance than the 5-Pad LBP TPJBs. However, contrary to one's expectation, notably, the 5-Pad LOP TPJBs exhibit a slightly better performance than the 6-Pad LOP TPJBs. Furthermore, we do not recommend any TPJB design efforts of either increasing a pad offset from 0.5 or a pad preload from 0 for the HPT in a standpoint of stability.

링 레이저 자이로스콥을 위한 유한요소법 기계 설계 (Mechanical Design of Ring Laser Gyroscope Using Finite Element Method)

  • 이정익
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.107-111
    • /
    • 2013
  • The gyroscopes have been used as a suitable inertial instrument for the navigation guidance and attitude controls. The accuracy as very sensitive sensor is limited by the lock-in region (dead band) due to the frequency coupling between two counter-propagating waves at low rotation rates. This frequency coupling gives no phase difference, and an angular increment is not detected. This problem can be overcome by mechanically dithering the gyroscope. This paper presents the design method of mechanical dither by the theoretical considerations and the verification of the theoretical equations through FEM applications. As a result, comparing to the past result, the maximum prediction error of resonant frequency was within 3 percent and peak dither rate was within 5 percent. It was found that the theoretical equations can be feasible for the mechanical performance of dither.

항공기용 하니콤 트림판넬의 능동제어 (Active Control of Honeycomb Trim Panels for Aircrafts)

  • ;정의봉;홍진숙
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.464-473
    • /
    • 2006
  • This paper summarises theoretical and experimental work on the feedback control of sound radiation from honeycomb panels using piezoceramic actuators. It is motivated by the problem of sound transmission in aircraft, specifically the active control of trim panels. Trim panels are generally honeycomb structures designed to meet the design requirement of low weight and high stiffness. They are resiliently-mounted to the fuselage for the passive reduction of noise transmission. Local coupling of the closely-spaced sensor and actuator was observed experimentally and modelled using a single degree of freedom system. The effect of the local coupling was to roll-off the response between the actuator and sensor at high frequencies, so that a feedback control system can have high gain margins. Unfortunately, only relatively poor global performance is then achieved because of localisation of reduction around the actuator. This localisation prompts the investigation of a multichannel active control system. Globalised reduction was predicted using a model of 12 channel direct velocity feedback control. The multichannel system, however, does not appear to yield a significant improvement in the performance because of decreased gain margin.

  • PDF

스퀼융합모델을 이용한 디스크 브레이크 스퀼 소음 연구 (Squeal Analysis of Disc Brake Using Analytical-FE Squeal Model)

  • 강재영
    • 한국산학기술학회논문지
    • /
    • 제15권11호
    • /
    • pp.6406-6411
    • /
    • 2014
  • 본 논문은 자동차 디스크 브레이크에서 발생하는 스퀼 현상을 보다 효과적으로 해석할 수 있는 스퀼 융합모델을 소개한다. 시스템의 형상 및 진동모드 추출은 유한요소법을 따르고 각 부품별 접촉부의 기술은 수학적 모델을 이용한다. 특히 회전하는 디스크와 정지상태의 패드 간 마찰력을 수학적으로 정교하게 기술하여 이를 유한요소 운동방정식에 접목한다. 이를 통해 선형안정성의 해의 정확도를 개선한다. 또한 다양한 시스템 파라메터 연구를 통하여 접촉강성에 대한 스퀼 민감도 및 모드연성 메카니즘을 구현한다.

네비게이션 가이드 구조물의 기계적 진동설계 (The Mechanical Dither Design of Navigation Guide Structure)

  • 이정익
    • 한국산학기술학회논문지
    • /
    • 제11권6호
    • /
    • pp.1949-1954
    • /
    • 2010
  • 자이로스콥은 네비게이션을 가이드하거나 특성을 제어하는데 적절한 관성 측정도구로 사용되었다. 매우 민감 한 센서로서의 정확성은 저회전율 역전파 사이의 진동수 커플링으로 인한 폐쇄영역(데드 밴드)으로 결정된다. 이 진동 커플링은 위상차가 없으며, 각증분 값은 검출되지 않는다. 이 문제는 자이로스콥의 기계적인 진동으로 해결될 수 있다. 본 논문은 FEM을 통해 이론적 식들의 이론적 고려사항과 증명의 방법으로 기계 진동의 설계방법을 제시한 것 이다. 결과적으로, 공명 진동수와 최대 진동률의 최대 예측 오차는 5 %이하였다. 진동의 기계적 성능을 위한 이론식 들은 타당하다고 할 수 있다.

베어링 배열방식이 고속 스핀들의 동특성에 미치는 영향 (Effects of Bearing Arrangement on the Dynamic Characteristics of High-speed Spindle)

  • 홍성욱;최춘석;이찬홍
    • 한국정밀공학회지
    • /
    • 제30권8호
    • /
    • pp.854-863
    • /
    • 2013
  • High-speed spindle systems typically employ angular contact ball bearings, which can resist both axial and radial loading, and exhibit high precision and durability. We investigated the effects of the arrangement of the angular contact ball bearings on the dynamics of high-speed spindle systems. The spindle dynamics were studied with a number of spindle-bearing models, and the location of the bearings was varied, along with the rotational speed and the preload. A finite element spindle model and a bearing model were used, and simulated data showed that the bearing arrangement significantly affected the spindle dynamics. Furthermore, the main effects were due to the cross coupling terms between the transverse and rotational motions of the ball bearings. The coupling stiffness terms were found to influence the spindle dynamics, depending on the mode shapes. An extensive discussion is provided on the effects of the bearing arrangement on the dynamics of the spindle.

시간지연제어기법을 이용한 로봇의 혼합(위치/힘) 제어에 관한 연구 (A Study on Hybrid(Position/Force) Control of Robot Using Time Delay Control)

  • 장평훈;박병석;박주이
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2554-2566
    • /
    • 1994
  • Robot position/force control has been a difficult task owing to the interaction between a robot and an environment with a rather high stiffness. In addition to the dynamic instability, the interaction causes the following problem : 1) chattering at steady-state, 2) dynamic coupling effect of robot, and 3) performance degradation due to a titled environment. To solve the problem, the Time Delay Control(TDC), which has been known to be quiet robust to plant uncertainties and disturbances, has been applied. In conjunction to TDC, the following three ideas were also used : 1) To reduce the amplitude of the chattering at the steady state, a novel scheme was adopted to enhance the resolution type solution of A/D conversion for the force sensor. 2) To reduce the dynamic coupling, a trajectory type position command was tried on a comparative basis to the step command, as well as a more accurate mass matrix was used instead of the constant mass matrix. 3) And finally to improve the performance in the tilted environment, force derivatives instead of position derivatives were used in the TDC law. Computer simulations and experiments resulted in obvious improvements on the quality of the hybrid control, thereby clearly demonstrating the effectiveness of TDC with the proposed ideas.

회전체 베어링계의 불균형 응답 해석을 위한 개선된 부분 구조 합성법 (An Improved Substructure Synthesis Method for Unbalance Response Analysis of Rotor Bearing Systems)

  • 홍성욱;박종혁
    • 소음진동
    • /
    • 제6권1호
    • /
    • pp.71-82
    • /
    • 1996
  • The finite element analysis for rotor bearing systems has been an essential tool for design, identification, and diagnosis of rotating machinery. Among others, the unbalance response analysis is fundamental in the vibration analysis of rotor bearing systems because rotating unbalance is recognized as a common sourve of vibration in rotating machinery. However there still remains a problem in the aspect of computational efficiency for unbalance response analysis of large rotor bearing systems. Gyroscopic terms and local bearing parameters in rotor bearing systems often make matters worse in unbalance response computation due to the complicated dynamic properties such as rotational speed dependency and/or anisotropy. The present paper proposes an efficient method for unbalance responses of multi-span rotor bearing systems. An improved substructure synthesis scheme is introduced which makes it possible to compute unbalance responses of the system by coupling unbalance responses of substructures that are of self adjoint problem with small order matrices. The present paper also suggests a scheme to easily deal with gyroscopic tems and local, coupling or bearing parameters. The proposed method causes no errors even though the computational effort is reduced drastically. The present method is demonstrated through three test examples.

  • PDF

승용차 스티어링 칼럼 시스템의 진동해석과 승차감 개선에 관한 연구 (A study on the vibration analysis of automobile steering system and improvement of ride comfort)

  • 김찬묵;임홍재;김도연;임승만;이외순;조항원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.336-342
    • /
    • 1997
  • In this paper, in order to analyze dynamic characteristics of automobile steering system consisting of many components, natural frequencies and transfer functions of each component and total system are found on FFT by experiments. Then, the data are transmitted to commercial package program, CADA-PC. By analyzing the data, the mode shape of each natural frequency and damping values are obtained. Also, the function of rubber coupling in column and telescoping effects on system are considered. C.A.E commercial program are used to compare with the results of experiments. For finite element modeling, I-DEAS is used. Data processing and post processing are operated on NASTRAN and XL, respectively. The ball-bearing and the linkage of shaft with column are modeled by spring elements. Stiffness is modified from the results of experiments. The results of those show close agreement. In the mode shape of total system, wheel mode is dominant at lower frequency while the column mode is main mode at higher . The role of rubber coupling in vibration isolation is clear on mode shape. Telescoping function makes natural frequency of column changed.

  • PDF