• 제목/요약/키워드: Coupling matrix

검색결과 344건 처리시간 0.023초

An Efficient Filter Design via Optimized Rational-Function Fitting, without Similarity Transformation

  • Kahng Sung-Tek
    • Journal of electromagnetic engineering and science
    • /
    • 제6권3호
    • /
    • pp.155-159
    • /
    • 2006
  • An efficient method is presented to design filters without the similarity transform of their coupling coefficient matrix as circuit parameters, which is very tedious due to pivoting and deciding rotation angles needed during the iterations. The transfer function of a filter is directly used for the design and its desired form is derived by the optimized rational-function fitting technique. A 3rd order coaxial lowpass filter is taken as an example to validate the proposed method.

유한요소-경계요소 조합에 의한 3차원 유체저장 구조물의 주파수 응답해석 (Three Dimesional Analysis of Liquid Storage Tanks Using FE-BE Coupling Method in Frequency Domin)

  • 김문겸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.275-283
    • /
    • 1999
  • To predict the dynamic behavior of the cylindrical liquid storage tank subjected to seismic ground motion three dimesional analysis with liquid-structure interaction must be performed, In this study a three dimensional dynamic analysis method over the frequency domain using FE-BE coupling technique which combines the efficiency of the boundary elements for liquid with the versatility of the finite shell elements for tank. The liquid region is modeled using boundary elements which can counter the sloshing effect at free surface and the structure region the tank itself is modeled using the degenerated finite shell elements. At the beginning of the procedure the equivalent mass matrix of the liquid is generated by boundary elements procedure. Then this equivalent mass matrix is combined with the mass matrix of the structure to produce the global mass matrix in the equation of the motion of fluid-structure interaction problem In order to demonstrate the accuracy and validity of the developed method the numerical results re compared with the previous studies. Finally the effects of the fluid-structure interaction on the natural frequency and dynamic response of the system are analyzed.

  • PDF

유연체 로터-커플링-블레이드 시스템의 로터 축과 블레이드의 연성 진동에 관한 연구 (A Study on the Coupled Shaft-Torsional and Blade-Bending Vibrations in the Flexible Rotor-Coupling-Blade System)

  • 이선숙;오병영;윤형원;차석주;나성수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.221-226
    • /
    • 2005
  • In this paper, a dynamic model for the rotor shaft-coupling-blade system is developed. The blades are attached to a disk and driven by an electric motor shaft which is flexible in torsion. We assumed that the shaft torsional flexibility is lumped in the flexible coupling which is usually adopted in rotor systems. The Lagrangian approach with the small deformation theory for both blade-bending and shaft-torsional deformations is employed for developing the equation of the motion. The assumed modes method is used for estimating the blade transverse deflection. The numerical results highlight the effects of both structural damping of the system and the torsional stiffness of the flexible coupling to the dynamic response of the blade. The results showed strong coupling between the blade bending and shaft torsional vibrations in the form of inertial nonlinearif, stiffness hardening and softening.

  • PDF

유연체 로터-커플링-블레이드 시스템의 로터 축과 블레이드의 연성 진동에 관한 연구 (A Study on the Coupled Shaft-torsional and Blade-bending Vibrations in the Flexible Rotor-coupling-blade System)

  • 오병영;이선숙;윤형원;차석주;나성수
    • 한국소음진동공학회논문집
    • /
    • 제15권9호
    • /
    • pp.1023-1029
    • /
    • 2005
  • In this paper, a dynamic model for the rotor shaft-coupling-blade system was developed. The blades are attached to a disk and driven by an electric motor shaft which is flexible in torsion. We assumed that the shaft torsional flexibility was lumped in the flexible coupling which is usually adopted in rotor systems. The Lagrangian approach with the small deformation theory for both blade-bending and shaft-torsional deformations was employed for developing the equation of the motion. The Assumed Modes Method was used for estimating the blade transverse deflection. The numerical results highlight the effects of both structural damping of the system and the torsional stiffness of the flexible coupling to the dynamic response of the blade. The results showed strong coupling between the blade bending and shaft torsional vibrations in the form of inertial nonlinearity, stiffness hardening and softening.

Hybrid Type Vibration Power Flow Analysis Method Using SEA Parameters

  • Park, Young-Ho;Hong, Suk-Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • 제21권4E호
    • /
    • pp.164-169
    • /
    • 2002
  • This paper proposes a hybrid method for vibration analysis in the medium to high frequency ranges using Power Flow Analysis (PFA) algorithm and Statistical Energy Analysis (SEA) coupling concepts. The main part of the developed method is the application of coupling loss factor (CLF) suggested in SEA to the power transmission, reflection coefficients in PI' A boundary conditions. The developed hybrid method shows very promising results with regard to the applications for the various damping loss factors in wide frequency ranges. And also this paper presents the applied results of Power Flow Finite Element Method (PFFEM) by forming the new joint element matrix with CLF to analyze the various plate structures in shape. The analytical results of automobile, complex plate structures show good agreement with those of PFFEM using the PFA coefficients.

선박 추진축의 종 비틂 연성진동에 관한 연구 (A Study on the Axial and Torsional Coupled Vibration of Marine propeller shafts)

  • 김용철;정태영;전윤호
    • 한국해양공학회지
    • /
    • 제8권1호
    • /
    • pp.71-83
    • /
    • 1994
  • The axial and torsional coupled vibration of marine propeller shafts can be mainly caused by actual shape of the crank shaft and hydrodynamic forces and moments due to propellers : the former leads to stiffness matrix coupling and the latter leads to inertia and damping matrix coupling. In the present paper the characteristics of the coupled vibration of marine propeller shafts due to hydrodynamic coupling is investigated in details. First, the modelling procedure of the system and analysis technique are also developed. To verify the present method the numerical calculations were also performed. Finally, the results were compared with existing data in the literature and it was found to be in good agreement.

  • PDF

지지구조물의 동특성을 고려한 회전축 모델의 진동해석 (Vibrational Analysis of Rotor Model considering the Dynamic Characteristics of the Support Structure)

  • 최복록;박진무
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.555-563
    • /
    • 2001
  • Support dynamics are often important in rotordynamic analyses. It may well happen in real situation of machines such as centrifugal pumps or turbines operating on flexible structure. This paper presents the applications of the impedance coupling method and the improved rotor model for including the support effects on the interaction with the rotor. The impedance coupling techniques are based on the FRFs of each substructure. Its dynamic stiffness matrix can be assembled to generate the system matrix, which satisfy the constraint conditions in the connection coordinates. And, the improved rotor uses the simplified spring-mass models as support properties. The equivalent support models are directly incorporated into the finite element rotor model. To verify the suggested analytical procedures, the results are compared to those of the pump system.

무 결합계수-회전변환의, 최적화된 유리함수 Fitting에 의한 효율적인 RF대역 여파기 설계기법 (An Efficient Design Method of RF Filters via Optimized Rational-Function Fitting, without Coupling-Coefficient Similarity Transformation)

  • 주정호;강승택;김형석
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2006년도 하계학술대회
    • /
    • pp.202-204
    • /
    • 2006
  • A new method is presented to design RF filters without the Similarity Transform of their coupling coefficient matrix as circuit parameters which is very tedious due to pivoting and deciding rotation angles needed during the iterations. The transfer function of a filter is directly used for the design and its desired form is derived by the optimized rational-function fitting technique. A 3rd order Coaxial Lowpass filter and an 8th order dual-mode elliptic integral function response filter are taken as an example to validate the proposed method.

  • PDF

Hybrid Type Vibration Power Flow Analysis Method Using SEA Parameters

  • 박영호;홍석윤
    • 한국음향학회지
    • /
    • 제21권4호
    • /
    • pp.164-164
    • /
    • 2002
  • This paper proposes a hybrid method for vibration analysis in the medium to high frequency ranges using Power Flow Analysis (PFA) algorithm and Statistical Energy Analysis (SEA) coupling concepts. The main part of the developed method is the application of coupling loss factor (CLF) suggested in SEA to the power transmission, reflection coefficients in PI' A boundary conditions. The developed hybrid method shows very promising results with regard to the applications for the various damping loss factors in wide frequency ranges. And also this paper presents the applied results of Power Flow Finite Element Method (PFFEM) by forming the new joint element matrix with CLF to analyze the various plate structures in shape. The analytical results of automobile, complex plate structures show good agreement with those of PFFEM using the PFA coefficients.

Secondary buckling analysis of spherical caps

  • Kato, Shiro;Chiba, Yoshinao;Mutoh, Itaru
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.715-728
    • /
    • 1997
  • The aim of this paper is to investigate the secondary buckling behaviour and mode-coupling of spherical caps under uniformly external pressure. The analysis makes use of a rotational finite shell element on the basis of strain-displacement relations according to Koiter's shell theory (Small Finite Deflections). The post-buckling behaviours after a bifurcation point are analyzed precisely by considering multi-mode coupling between several higher order harmonic wave numbers: and on the way of post-buckling path the positive definiteness of incremental stiffness matrix of uncoupled modes is examined step by step. The secondary buckling point that has zero eigen-value of incremental stiffness matrix and the corresponding secondary mode are obtained, moreover, the secondary post-buckling path is traced.