• Title/Summary/Keyword: Coupling components

Search Result 351, Processing Time 0.029 seconds

Water Absorption of Wood Flour-Polypropylene Composites: Effects of Wood Species, Filler Particle Size and Coupling Agent (목분-폴리프로필렌 복합재의 수분흡수율 : 목재수종, 충진제 입자크기 및 상용화제의 영향)

  • Kang, In-Aeh;Lee, Sun-Youn;Doh, Geum-Hyun;Chun, Sang-Jin;Yoon, Seung-Lak
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.298-305
    • /
    • 2010
  • The effects of wood species, chemical components, filler loading level, filler particle size, and coupling agent on the water absorption property of the wood flour filled polypropylene (PP) composites were investigated in this study. After 500, 1,000, 1,500, 2,000, 2,500 and 3,000 hr water immersion, Quercus (Quercus accutisima Carr.) and Maackia (Maackia amuresis Rupr. et Maxim) showed significantly lower water absorption properties compared to Larix (Larix kaempferi Lamb.). As wood flour loading increases from 10 to 50 wt%, most wood species showed increased water absorption after a given immersion period. Particle size of wood flour proved to have very significant effects on water absorption of the composites. The effect of coupling agent was positive in terms of lowering water absorption of the composites. As the treatment level of coupling agent increases, the water absorption of the composites decreases. The lowest water absorption was obtained at the lower wood flour loading (Maackia), smaller particle size and by the addition of coupling agent. Thickness swelling of the composites shows close dependency on water absorption.

Seismic interactions between suspended ceilings and nonstructural partition walls

  • Huang, Wen-Chun;McClure, Ghyslaine;Hussainzada, Nahidah
    • Coupled systems mechanics
    • /
    • v.2 no.4
    • /
    • pp.329-348
    • /
    • 2013
  • This study aims at observing the coupling behaviours between suspended ceilings and partition walls in terms of their global seismic performance using full-scale shake table tests. The suspended ceilings with planar dimensions of $6.0m{\times}3.6m$ were tested with two types of panels: acoustic lay-in and metal clip-on panels. They were further categorized as seismic-braced, seismic-unbraced, and non-seismic installations. Also, two configurations of 2.7 m high partition wall specimens, with C-shape and I-shape in the plane layouts, were tested. In total, seven ceiling-partition-coupling (CPC) specimens were tested utilizing a unidirectional seismic simulator. The test results indicate that the damage patterns of the tested CPC systems included failure of the ceiling grids, shearing-off of the wall top railing, and, most destructively, numerous partial detachments and falling of the ceiling panels. The loss of panels was mostly concentrated near the center of the tested partition wall. The testing results also confirmed that the failure mode of the non-seismic CPC systems was brittle: The whole system would collapse suddenly all at once when the magnitude of the inputs hit the capacity threshold, rather than displaying progressive damage. Overall, the seismic capacity of the unbraced and braced CPC systems could be up to 1.23 g and 2.67 g, respectively; these accelerations were both achieved at the base of the partition wall. Nonetheless, for practical applications, it is noteworthy that the three-dimensional nature of seismic excitations and the size effect of the ceiling area are parameters that exacerbate the CPC's seismic response so that their actual capacity may be dramatically decreased, leading to important losses even in moderate seismic events.

Finite element models of reinforced ECC beams subjected to various cyclic deformation

  • Frank, Timothy E.;Lepech, Michael D.;Billington, Sarah L.
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.305-317
    • /
    • 2018
  • Steel reinforced Engineered Cementitious Composite (ECC) components have been proposed for seismic structural applications, for example in coupling beams, infill panels, joints, columns, and flexural members. The development of strain in the steel reinforcement of cementitious components has been shown to vary based on both the steel reinforcement ratio and the applied deformation history. Strain in the steel reinforcement of reinforced ECC components is an important structural response metric because ultimate failure is often by fracture of the steel reinforcement. A recently proposed bond-slip model has been successfully calibrated to cyclically tested reinforced ECC beams wherein the deformation history contained monotonically increasing cycles. This paper reports simulations of two-dimensional finite element models of reinforced ECC beams to determine the appropriateness and significance of altering a phenomenological bond-slip model based on the applied deformation history. The numerical simulations with various values of post-peak bond-slip softening stiffness are compared to experimental results. Varying the post-peak bond-slip softening stiffness had little effect on the cracking patterns and hysteretic response of the reinforced ECC flexural models tested, which consisted of two different steel reinforcement ratios subjected to two different deformation histories. Varying the post-peak bond-slip softening stiffness did, however, affect the magnitude of strain and the length of reinforcing bar that strain-hardened. Overall, a numerical model with a constant bond-slip model represented well various responses in reinforced ECC beams with multiple steel reinforcement ratios subjected to different deformation histories.

Second-Moment Closure Modelling of Particle-Laden Homogeneous Turbulent Shear Flows (고체입자가 부상된 균질 난류 전단유동의 2차-모멘트 모형화)

  • Shin, Jong-Keun;Seo, Jeong-Sik;Han, Seong-Ho;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.29-39
    • /
    • 2007
  • A second-moment closure is applied to the prediction of a homogeneous turbulent shear flow laden with mono-size particles. The closure is curried out based on a 'two-fluid' methodology in which both carrier and dispersed phases are considered in the Eulerian frame. To reduce the number of coupled differential equations to be solved, Reynolds stress transport equations and algebraic stress models are judiciously combined to obtain the Reynolds stress of carrier and dispersed phases in the mean momentum equation. That is, the Reynolds stress components for carrier and dispersed phases are solved by modelled transport equations, but the fluid-particle velocity covariance tensors are treated by the algebraic models. The present predictions for all the components of Reynolds stresses are compared to the DNS data. Reasonable agreements are observed in all the components, and the effects of the coupling of carrier and dispersed phases are properly captured in every aspects.

A Study On Vehicle Interior Noise Reduction Applying FRF Based Substructuring (주파수 응답함수 합성법을 이용한 차량 실내 소음 저감에 관한 연구)

  • Oh, Sang-Hoon;Kang, Yeon-June;Sun, Jong-Cheon;Song, Moon-Sung;Kim, Seong-Goo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.122-125
    • /
    • 2006
  • The Substructure Synthesis means the technology to predict the dynamic properties of an assembly from the properties of its components, or to predict the effect of a modification on a structure. The FRF Based Substructuring method is a kind of the Substructure Synthesis and very useful to predict the efficiency of the product in the early stage of development. Especially, the Hybrid FBS method is very useful to predict the vehicle NVH characteristics after modifying some components of the vehicle. Target components can be established on the basis of test models and FE models of the prototype constructed in the early stage of development. In this study, the Hybrid FBS method was applied to vehicle subframe and car-body in order to reduce vehicle interior noise induced by engine exciting force.

  • PDF

The Reliability of Optical Fiber Assembly Using Glass Solder

  • Lee, Jong-Jing;Kang, Hyun-Seo;Koh, Jai-Sang
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.147-151
    • /
    • 2004
  • In this study, an optical fiber assembly directly coupled with a laser diode or a photo diode is designed to confirm high reliable optical coupling efficiency of optical transmitter(Tx) and receiver(Rx). The optical fiber assembly is fabricated by soldering an optical fiber and a Kovar ferrule using a glass solder after inserting an optical fiber through a Kovar ferrule. The Kovar which has good welding characteristics is applied to introduce laser welding technique. The glass solder has excellent thermal characteristics such as thermal shift delamination compared with PbSn, AuSn solder previously used usually. Furthermore, the glass solder doesn't need fiber metalization and this enables low cost fabrication. However, the glass soldering is high temperature process over 35$0^{\circ}C$ and the convex shape after solidification due to surface tension causes the stress concentration on optical fiber. The stress concentration on the optical fiber increases the optical insertion loss and possibility of crack formation. The shape of glass solder was designed referring to 2-D Axi-symmetric FEM simulation. To test the mechanical reliability, mechanical vibration test and shock test were done according to Telcorida GR-468-Core protocol. After each test, the optical loss of the stress distributed fiber assembly didn't exceed 0.5 dB, which passes the test.

  • PDF

The Study on the Recovery of Volatile Organic Components by Pervaporation (Pervaporation을 이용한 휘발성 유기성분 회수에 관한 연구)

  • 김희진;송영석;민병렬
    • Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.51-62
    • /
    • 1999
  • The recovery of trace volatile organic components from water by pervaporation was investigated. Permeation experiments through homogeneous polydimethylsiloxane(PDMS) membrane was carried out and the effect of feed concentrations and membrane thicknesses on the permeation characteristics were investigated. A solution-diffusion model is used to describe the pervaporation transport mechanism. In homogeneous PDMS membrane it appeared that the selectivities of MEK and toluene are constant, and that organic flux has a linear relationship with feed concentration. These results indicate that the coupling effects between organics were negligible. The selectivity of PDMS membranes is invariant with respect to the membrane thickness. The intrinsic membrane permeability of organic components determined by using a solution-diffusion model. Comparing with various composite type membrane, the membrane using PEG treated nonwoven fabric as sublayer showed the best performance in VOC recovery by pervaporation.

  • PDF

Electroabsorption modulator-integrated distributed Bragg reflector laser diode for C-band WDM-based networks

  • Oh-Kee Kwon;Chul-Wook Lee;Ki-Soo Kim
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.163-170
    • /
    • 2023
  • We report an electroabsorption modulator (EAM)-integrated distributed Bragg reflector laser diode (DBR-LD) capable of supporting a high data rate and a wide wavelength tuning. The DBR-LD contains two tuning elements, plasma and heater tunings, both of which are implemented in the DBR section, which have blue-shift and red-shift in the Bragg wavelength through a current injection, respectively. The light created from the DBR-LD is intensity-modulated through the EAM voltage, which is integrated monolithically with the DBRLD using a butt-joint coupling method. The fabricated chip shows a threshold current of approximately 8 mA, tuning range of greater than 30 nm, and static extinction ratio of higher than 20 dB while maintaining a side mode suppression ratio of greater than 40 dB under a window of 1550 nm. To evaluate its modulation properties, the chip was bonded onto a mount including a radiofrequency line and a load resistor showing clear eye openings at data rates of 25 Gb/s nonreturn-to-zero and 50 Gb/s pulse amplitude modulation 4-level, respectively.

Study about Component Identification Method Based On RUP (RUP 기반의 컴포넌트 식별 방법에 관한 연구)

  • Choe, Mi-Suk;Yun, Yong-Ik;Park, Jae-Nyeon
    • The KIPS Transactions:PartD
    • /
    • v.9D no.1
    • /
    • pp.91-102
    • /
    • 2002
  • We need a component-based system to reflect software changes in user's requirements, to implement a system at a rapid speed as well as to efficiently manage the system in a maintenance phase and to easily change software. Moreover, the component-based system has a merit in development cost. However, existing component development methodology for implement of component-based system is inefficient in object identification for component identification. Moreover, the existing component development methodology also fails to provide any method to identify system component. It merely provides procedures and methods to identify business component focused on a whole system domain. In addition, it has another problem that it considerably relies on developer's experiences and intuitions for component identification. Therefore, according to this paper, RUP (Rational Unified Process) is applied from a requirement analysis phase to an object identification phase in order to improve the inefficiency of object identification. In addition, this paper procedures and methods for system component identification, and identifies business components based on the identified system component, rather than on the whole system domain. This paper also provides and applies cohesion metric and coupling metric so as to overcome the problem that component identification depends on developer's intuitions and experiences. Accordingly, the component identification method proposed in this paper, may identify components more effectively based on facility of object identification, functional reusability of components, traceability, and independence of components.

A THERMO-ELASTO-VISCOPLASTIC MODEL FOR COMPOSITE MATERIALS AND ITS FINITE ELEMENT ANALYSIS

  • Shin, Eui-Sup
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.45-65
    • /
    • 2002
  • A constitutive model on oorthotropic thermo-elasto-viscoplasticity for fiber-reinforced composite materials Is illustrated, and their thermomechanical responses are predicted with the fully-coupled finite element formulation. The unmixing-mixing scheme can be adopted with the multipartite matrix method as the constitutive model. Basic assumptions based upon the composite micromechanics are postulated, and the strain components of thermal expansion due to temperature change are included In the formulation. Also. more than two sets of mechanical variables, which represent the deformation states of multipartite matrix can be introduced arbitrarily. In particular, the unmixing-mixing scheme can be used with any well-known isotropic viscoplastic theory of the matrix material. The scheme unnecessitates the complex processes for developing an orthotropic viscoplastic theory. The governing equations based on fully-coupled thermomechanics are derived with constitutive arrangement by the unmixing-mixing concept. By considering some auxiliary conditions, the Initial-boundary value problem Is completely set up. As a tool of numerical analyses, the finite element method Is used with isoparametric Interpolation fer the displacement and the temperature fields. The equation of mutton and the energy conservation equation are spatially discretized, and then the time marching techniques such as the Newmark method and the Crank-Nicolson technique are applied. To solve the ultimate nonlinear simultaneous equations, a successive iteration algorithm is constructed with subincrementing technique. As a numerical study, a series of analyses are performed with the main focus on the thermomechanical coupling effect in composite materials. The progress of viscoplastic deformation, the stress-strain relation, and the temperature History are careful1y examined when composite laminates are subjected to repeated cyclic loading.

  • PDF