• Title/Summary/Keyword: Coupling System

Search Result 2,175, Processing Time 0.028 seconds

Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect (연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석)

  • Lim, Ha-Seong;Kwon, Sung-Hun;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.912-918
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

Flip-Flap Valve-Type Breakaway Coupling through Reverse Engineering (역설계를 통한 Flip-Flap 밸브형 분리식 커플링에 관한 연구)

  • Ahn, Hee-Hak;Yi, Chung-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.16-22
    • /
    • 2016
  • This study is a structural analysis of 3" Cryogenic Safety Breakaway Coupling using a manufactured product from KLAW Company. Breakaway coupling is very important in the pipe system, especially when transporting fuel or gas in the pipeline. For the analysis of the patent infringement target, Dover and KLAW Company's technologies (US 08127785, EP 0764809) were analyzed. Finally, the flip-flap valve overlap was measured after combining the breakaway coupling through 3D modeling, and the valve overlap had a 0.7mm measurement value from the height gauge. The safety breakaway coupling consisted of a total of 62 pieces (body: 42, valve module: 21).

Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect (연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석)

  • Lim, Ha-Seong;Kwon, Sung-Hun;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1354-1359
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

  • PDF

FEM-BEM iterative coupling procedures to analyze interacting wave propagation models: fluid-fluid, solid-solid and fluid-solid analyses

  • Soares, Delfim Jr.
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.19-37
    • /
    • 2012
  • In this work, the iterative coupling of finite element and boundary element methods for the investigation of coupled fluid-fluid, solid-solid and fluid-solid wave propagation models is reviewed. In order to perform the coupling of the two numerical methods, a successive renewal of the variables on the common interface between the two sub-domains is performed through an iterative procedure until convergence is achieved. In the case of local nonlinearities within the finite element sub-domain, it is straightforward to perform the iterative coupling together with the iterations needed to solve the nonlinear system. In particular, a more efficient and stable performance of the coupling procedure is achieved by a special formulation that allows to use different time steps in each sub-domain. Optimized relaxation parameters are also considered in the analyses, in order to speed up and/or to ensure the convergence of the iterative process.

Evidence of spin-phonon coupling in La2NiMnO6 double perovskite

  • Nasir, Mohammad;Ahmed, Ateeq;Park, Hee Jung;Sen, Somaditya
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.3
    • /
    • pp.112-115
    • /
    • 2021
  • Herein, a correlation between B-site cation order and spin-phonon coupling in La2NiMnO6 double perovskite has been investigated. Raman spectra of La2NiMnO6 double perovskite annealed at 950 and 1400℃ have been measured in the 140-598 K range. A substantial softening of the phonon modes has been observed below the Curie temperature, which emphasized the presence of the spin-phonon coupling in the system. The spin-phonon coupling was found to be stronger in relatively more ordered La2NiMnO6 double perovskite. Thus, the magnitude of spin-phonon coupling was influenced by the Ni/Mn cation order.

Multi-field Coupling Simulation and Experimental Study on Transformer Vibration Caused by DC Bias

  • Wang, Jingang;Gao, Can;Duan, Xu;Mao, Kai
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.176-187
    • /
    • 2015
  • DC bias will cause abnormal vibration of transformers. Aiming at such a problem, transformer vibration affected by DC bias has been studied combined with transformer core and winding vibration mechanism use multi-physical field simulation software COMSOL in this paper. Furthermore the coupling model of electromagnetic-structural force field has been established, and the variation pattern of inner flux density, distribution of mechanical stress, tension and displacement were analyzed based on the coupling model. Finally, an experiment platform has been built up which was employed to verify the correctness of model.

A Study of Energy Saving Hydraulic System by A Pressure Coupling Hydrostatic Transmission (압력커플링 정유압 변속기를 이용한 에너지 절감 유압시스템에 관한 연구)

  • Do, H.T.;Ahn, K.K.
    • Journal of Drive and Control
    • /
    • v.9 no.1
    • /
    • pp.10-17
    • /
    • 2012
  • Nowadays, the demand of energy saving is increasing more and more while the natural resources have been exhausted. Besides, the emission gas caused by vehicles has been being a serious environment problem. Therefore, many studies have been carried out, especially focusing on braking energy regeneration, in order to save energy as well as reduce emission of mobile vehicles. In this paper, we propose a closed-loop hydrostatic transmission for braking energy regeneration with two configurations to reduce the energy consumption by recovering the braking energy. The effectiveness of the proposed system was verified by simulation. The simulation results indicated that the pressure coupling configuration gave better performance in comparison to flow coupling configuration about 40.8%, 61.7% and 53.8% reduction of fuel consumption in 10 mode, 10 mode modified profile and highway schedules, respectively.

Controller Design for Feedforward Decoupling in SPM-based Data Storage System (SPM-based Data Storage System 의 Feedforward Decoupling 기법을 적용한 제어기 설계)

  • Jeong, Ji-Young;Moon, Jun;Lee, Choong-Woo;Chung, Chung-Choo;Kim, Young-Sik
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.2
    • /
    • pp.59-65
    • /
    • 2007
  • Scanning Prove Microscope (SPM) - based Data Storage (SDS)는 Atomic Force Microscope (AFM)을 이용하여 Cantilever Tip 이 저장 장치 미디어에 나노미터 단위로 비트를 읽고, 쓰고 지우는 저장 장치로써, x, y 두 축을 이용한다. 따라서 축간 coupling 의 영향이 크게 발생한다. 따라서 축간 coupling 의 영향을 고려하여 제어기를 설계하여야 한다. 본 논문은 coupling 요소를 제거하기 위하여 Feedforward Decoupler 를 설계하여 Stage 의 입력 앞 단에 추가하는 방법을 제안하였다. Feedforward Decoupler 를 추가함으로써 coupling 요소가 줄어드는 것을 모의 실험을 통해 확인한다. 이를 통해 나노급으로 보다 정밀한 제어가 가능함을 확인하였다.

  • PDF

A Study of High Performance Composite Flexible Couplings (고성능 복합재료 가요성 커플링에 관한 연구)

  • Kim P. J.;Park I. K.;Kim K. T.;Woo K.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.79-82
    • /
    • 2004
  • The rotor drive system in rotor-craft carries out power transmission from powerplant to rotors and the drive shafts are fallen into misaligned condition by the vibration of engine and shafts and the deformation of supporting structures. The high performance flexible coupling accommodates these misalignments of drive shafts. In this study, we compare the performance of the metalic flexible coupling with the composite flexible coupling through analytic method to develop the high performance flexible coupling used in the rotor drive system of UAV tilt-rotor.

  • PDF

Vibration Localization due to Mistuned Coupling Effects Among Repeated Structures (반복 구조간 연성 효과의 불균일성에 의한 진동 국부화)

  • Kang, Min-Kyoo;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.994-1000
    • /
    • 2002
  • In periodically repeated cyclic structures, small property irregularity of their substructures often causes significant difference in their dynamic responses. which results in unpredicted premature failures. The small irregularity and the resulting phenomenon are called the mistuning and the vibration localization. respectively. In this paper, the vibration localization phenomena due to mistuned coupling effects are investigated. To effectively achieve the objective, a simple coupled multi-pendulum system Is employed. The results show that if there exists some coupling stiffness irregularity, vibration localization may occur and becomes more predominant as the number of substructures increases.