• Title/Summary/Keyword: Coupling Scheme

Search Result 289, Processing Time 0.025 seconds

Computation of Pressure Fields in the Lagrangian Vortex Method (Lagrangian 보오텍스 방법에서의 압력장 계산)

  • 이승재;김광수;서정천
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • In the Lagrangian vortex particle method based on the vorticity-velocity formulation for solving the incompressible Navier-Stokes equations, a numerical scheme for calculating pressure fields is presented. Implementation of the numerical method is directly connected with the well-established surface panel methods, just by dealing with the dynamic coupling among vorticity field. Assuming the vorticity and the velocity fields are to be calculated in time domain analysis, the pressure calculation for a complete set of solution at present time step is performed in a similar way to the one used in the Eulerian description. For a validation of the present method, we illustrate the early development of the viscous flow about an impulsive started circular cylinder for Reynolds number 550. The comparative study with the Eulerian finite Volume method provides an extensive understanding and application of the mesh-free Lagrangian vortex methods for numerical simulation of viscous flows around arbitrary bodies of general shape.

Fault Detection and Isolation of Integrated SDINS/GPS System Using the Generalized Likelihood Ratio (일반공산비 기법을 이용한 SDINS/GPS 통합시스템의 고장 검출 및 격리)

  • Shin, Jeong-Hoon;Lim, You-Chol;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.140-148
    • /
    • 2000
  • This paper presents a fault detection and isolation(FDI) method based on Generalized Likelihood Ratio(GLR) test for the tightly coupled SDINS/CPS system. The GLR test is known to have the capability of detecting an assumed change while estimating its occurrence time and magnitude, and isolating the changing part. Once a fault is detected even if we don't know if the fault occurrs at either INS or GPS, multi-hypothesized GLR scheme performs the fault isolation between INS and GPS, and find which satellite malfunctions. However, in the INS faulty case, it turned out to fail to accomodate the fault isolation between accelerometer and gyroscope due to the coupling effects and a poor observability of the system. Hence, to isolate the INS fault, it needs to change the attitude of the vehicle resulting in enhancing the degree of observability.

  • PDF

A Study on The 4-Parallel Operation of PWM Converter for High Speed Train Auxiliary Block (고속전철 보조전원 장치용 PWM컨버터의 4병렬 운전에 관한 연구)

  • Oh, G.W.;Kim, Y.C.;Won, C.Y.;Choi, J.M.;Ki, S.W.;Bae, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1230-1232
    • /
    • 2000
  • To reduce harmonics in the AC line and achieve a unit power factor, A 4 paralled single phase PWM AC/DC converter has been proposed. In this paper, the coupling components are derived analytically from PWM converter input transformer model and control scheme to solve this problem is proposed. Unit power factor was obtained and the AC-side current harmonics were reduced. Simulation results show the usefulness of the proposed method and applicability to PWM converter in auxiliary block of high speed train.

  • PDF

Computation of pressure fields in application of the Lagrangian vortex method (Lagrangian 보우텍스방법에서의 압력장계산)

  • Kim K. S.;Lee S. J.;Suh J. C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.37-42
    • /
    • 2003
  • A vorticity-velocity integro-differential formulation of incompressible Wavier-Stokes equations is described, focusing on a scheme for calculating pressure fields in application of the Lagrangian vortex method in connection with panel methods. It deals with the dynamic coupling among velocity, vorticity and pressure, and the Helmholtz decomposition of the velocity field, through a comparative study with the Eulerian finite volume method, we provide an extensive understanding of the Lagrangian vortex methods for numerical simulations of viscous flows around arbitrary bodies.

  • PDF

Strongly coupled partitioned six degree-of-freedom rigid body motion solver with Aitken's dynamic under-relaxation

  • Chow, Jeng Hei;Ng, E.Y.K.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.320-329
    • /
    • 2016
  • An implicit method of solving the six degree-of-freedom rigid body motion equations based on the second order Adams-Bashforth-Moulten method was utilised as an improvement over the leapfrog scheme by making modifications to the rigid body motion solver libraries directly. The implementation will depend on predictor-corrector steps still residing within the hybrid Pressure Implicit with Splitting of Operators - Semi-Implicit Method for Pressure Linked Equations (PIMPLE) outer corrector loops to ensure strong coupling between fluid and motion. Aitken's under-relaxation is also introduced in this study to optimise the convergence rate and stability of the coupled solver. The resulting coupled solver ran on a free floating object tutorial test case when converged matches the original solver. It further allows a varying 70%-80% reduction in simulation times compared using a fixed under-relaxation to achieve the required stability.

Effects of Radiation on Conjugate Natural Convection from a Vertical Plate Fin (수직 평판휜으로부터의 복합자연대류에 미치는 복사효과)

  • 김경훈;김세웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.382-390
    • /
    • 1992
  • The problem of natural convection from a vertical fin is solved by coupling the thermal diffusion equation in the fin to the constitutive equations of the ambient medium involving the radiation of the medium. The analysis is accomplished by employing an integral method. The governing equations for the problem are solved by shooting method based on the Runge-Kutta Scheme at Pr= 0.7. For the range of values of the fin parameter and the radiation-conduction parameter in the analysis, the numerical results show that the radiation effects play an important role in the heat transfer and enhance the heat transfer.

Estimation of the Generating Power for Distributed Generations Interconnected with Distribution Networks (배전 계통에 연계된 분산전원의 발전량 예측 알고리즘)

  • Choi, Don-Man;Jang, Sung-Il;Kim, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.327-330
    • /
    • 2003
  • This paper proposes an estimation algorithm for the generating power of distributed generations(DG) interconnected with distribution networks. These days, DG are rapidly increasing and most of them are interconnected with distribution networks. The DG can supply power into the distribution network, which may make significant impact on fault current and the protection scheme of the interconnected distribution networks. Generally these influences of DG is proportioned as the distributed generator's power. Therefore, it is important to forecast the output power of distributed generator in PCC(point of common coupling). This paper presents the prediction method of DG's power by monitoring the current and phase difference.

  • PDF

Photonic Glucose Sensor Using a Vertically Coupled Polymeric Microdisk Resonator (수직 결합형 폴리머 마이크로디스크 공진기를 이용한 광학적 글루코스 센서)

  • Kim, Gun-Duk;Son, Geun-Sik;Lee, Hak-Soon;Kim, K-Do;Lee, Sang-Shin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1412-1415
    • /
    • 2008
  • A glucose biosensor using a microdisk resonator in polymeric waveguides was developed by observing either the shift in the resonant wavelength or the variation in the optical power. The deformation in the transfer curve of the vertically coupled resonator sensor resulting from the variation in the disk-to-ring coupling, which was incurred by the application of the target analyze, was suppressed. And the refractive index of the polymeric waveguide was devised to closely follow that of the analyze itself for enhancing the sensitivity of the sensor. The sensitivity and measurement range were observed to be respectively 0.14 pm/(mg/dL) and 1500 mg/dL (theoretically up to 4700 mg/dL, for the wavelength shift method and 0.04 dB/(mg/dU and 140 mg/dL the power variation scheme.

Short-Term Hydro Scheduling for Hydrothermal Coordination Using Genetic Algorithm (유전 알고리즘에 의한 수화력 협조를 위한 단기 수력 스케줄링)

  • Lee, Yong-Han;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.289-291
    • /
    • 1998
  • This paper presents short-term hydro scheduling method for hydrothermal coordination by genetic algorithm. Hydro scheduling problem has many constraints with fixed final reservoir volume. In this paper, the difficult water balance constraints caused by hydraulic coupling satisfied throughout dynamic decoding method. Adaptive penalizing method was also proposed to handle the infeasible solutions that violate various constraints. The effectiveness of proposed method in this paper was examined through the case studies. Further studies for the validation of the hydro scheduling scheme obtained by genetic algorithm will be very appreciated.

  • PDF

용탕유동과 응고를 고려한 주조공정의 유한요소해석

  • 윤석일;김용환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.620-625
    • /
    • 1995
  • Finite element analysis tool was developed to analyze the casting process. Generally, casting processes consists of mold filling and solifification. In order to investigate the effects of process variables and to predict the defects, both filling and solidiffication process were simulated simultaneously. At filling process, especiallywe consider thermal coupling to investigate thermal history of material during the filling stage. And thermal condition at the final stage of filling is used as the initial conditions in a solidification process for the exact simulation of the actual casting processes. At mold filling process, Lagrangian-type finite element method with automatic remashing scheme was used to find the material flow. To avoid numerical instability in low viscous fluid, a perturbation method with artificial viscosity is adopted. At solififfication process, enthalpy-based finite element method was used to solve the heat transfer problem with phase change. And elastic stress analysis has been performed to predict the thermal residual stress. Through the FE analysis, solidiffication time, position of solidus line, liquidus line and thermal residual stress are studied. Finite element tools developed in this study will be used process design of casting process and maybe basic structure for total CAE system of castigs which will be constructed afterward.