• Title/Summary/Keyword: Coupling Scheme

Search Result 289, Processing Time 0.023 seconds

An Improvement On-Line Failure Diagnosis of DC Link Capacitor in PWM Power Converters (PWM 전력 컨버터에서 DC 링크 커패시터의 개선된 온라인 고장 진단)

  • Shon, Jin-Geun;Na, Chae-Dong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.40-46
    • /
    • 2010
  • DC link electrolytic capacitors are widely used in various PWM power converter system, such as adjustable speed driver(ASD) or DC/DC converter. Electrolytic capacitors, which is the most of the time affected by aging effect, plays a very important role for the power electronics system quality and reliability. This objective of this paper is to propose a improvement method to detect the rise of equivalent series resistor(ESR) in order to realize the online failure prediction of electrolytic capacitor for DC link of PWM power converter. The ESR detection scheme is based on the determination of the electrolytic capacitor AC losses calculated from voltage/current measurement using AC coupling. Therefore, the preposed online failure prediction method has the merits of easy ESR computation and circuit simplicity compare with BPF method. Simulation results show the veridity of the proposed on-line ESR estimation method.

Determination of the Principal Directions of Composite Helicopter Rotor Blades with Arbitrary Cross Sections

  • Oh, Taek-Yul;Choi, Myung-Jin;Yu, Yong-Seok;Chae, Kyung-Duck
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.291-297
    • /
    • 2000
  • Modern helicopter rotor blades with non-homogeneous cross sections, composed of anisotropic material, require highly sophisticated structural analysis because of various cross sectional geometry and material properties. They may be subjected by the combined axial, bending, and torsional loading, and the dynamic and static behaviors of rotor blades are seriously influenced by the structural coupling under rotating condition. To simplify the analysis procedure using one dimensional beam model, it is necessary to determine the principal coordinate of the rotor blade. In this study, a method for the determination of the principal coordinate including elastic and shear centers is presented, based upon continuum mechanics. The scheme is verified by comparing the results with confirmed experimental results.

  • PDF

Implementation of LED BLU Using Metal core PCB with Anodizing Oxide Layer and Reflection Cup Structure (에노다이징 절연층과 반사컵 구조를 보유한 COB타입 LED BLU 광원구현)

  • Cho, Jae-Hyun;Lee, Min-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.8-13
    • /
    • 2009
  • LED BLU(Back Light Unit), based on MCPCB(Metal Core Printed Circuit Board) with anodizing oxide dielectric layer and improved thermal dissipation property, are presented. Reflecting cups were also formed on the surface of the MCPCB such that optical coupling between neighboring chips were minimized for improving the photon extraction efficiency. LED chips were directly attached on the MCPCB by using the COB (Chip On Board) scheme.

Simulations of nonlinear field line resonances

  • Kim, Kyung-Im;Lee, Dong-Hun;Kim, Jong-Soo
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.23.3-23.3
    • /
    • 2008
  • In this study, the nature of nonlinear field line resonances (FLR) is studied by adopting full MHD simulations. The MHD code used here is based on the total variation diminishing (TVD) scheme and we have performed numerical simulations of FLR with its three-dimensional code. If the source perturbation is strongly impulsive and thus the timescale of the initial variations is sufficiently smaller than the convection timescale, FLRs are easily confirmed in these simulations. When the disturbance is sufficiently small, it is shown that linear properties of MHD wave coupling are well reproduced. In order to examine nonlinear nature of FLR, wave spectra, Poynting flux and energy distribution are studied at resonances as the magnitude of initial disturbance gradually increases.

  • PDF

Application simulations as numerical laboratory for large diameter rockfill materials (대입경 락필재료에 대한 수치시험실 활용해석)

  • Jeon, Je-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.852-855
    • /
    • 2010
  • Numerical simulations for large scale triaxial tests with large diameter rockfill materials are conducted using distinct element method. For generation of compacted assembly with specific grain size distribution and initial material porosity, the clump logic method and expansion of generated particles are adapted. With micro parameters which are chosen by calibration process, discrete particle modelling of triaxial test in case of other confining stress and cyclic loading condition were conducted. Also numerical simulations of fluid injection into particulate materials were conducted to observe cavity initiation and propagation using distinct element method. The fluid scheme solves the continuity and Navior-Stokes equations numerically, then derives pressure and velocity vectors for fixed grid by considering the existence of particles within the fluid cell.

  • PDF

Numerical Analysis of the 3-D Flow Field in a Globe Valve Trim under High Pressure Drop (고차압 제어용 글로브 밸브 트림 내부의 3차원 유동장 해석)

  • Yoon, Joon-Yong;Byun, Sung-Joon;Yang, Jae-Mo;Lee, Do-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.3 s.12
    • /
    • pp.14-20
    • /
    • 2001
  • Numerical analysis of the three dimensional turbulent flow field in a complex valve trim is carried out to confirm the possibility whether this simulation tool can be used as a design tool or not. The simulation of the incompressible flow in a glove valve is performed by using the commercial code. CFD-ACEA utilizes the finite volume approach as a discretization scheme, and the pressure-velocity coupling is made from SIMPLEC algorithm in it. Four flow cases of the control valve are investigated, and the valve flow coefficient for each case is compared with the experimental data. Simulation results show a good agreement with the experiments, and it is observed that the cavitation model improves the simulation results.

  • PDF

3-Dimensionally Integrated Planar Optics for 100 Gb/s Optical Packet Address Detection

  • Song, Seok-Ho;Lee, El-Hang
    • ETRI Journal
    • /
    • v.17 no.2
    • /
    • pp.1-10
    • /
    • 1995
  • We propose a novel planar optical interconnection scheme for 100 Gb/s optical packet address detection, which consists of waveguide grating couplers and a diffractive microlens integrated on a glass substrate 3-dimensionally. Length and duty cycle of the grating couplers have been determined on the bases of the ray-optic propagation-mode analysis in a slab waveguide and of the rigorous coupled-wave diffraction analysis for out-coupled radiation-modes. The 3-dimensionally integrated planar optics makes it possible to connect each address bit-signals of $TE_ 0-waveguide$ mode to the detector with a power uniformity of 6.4 % and a total coupling efficiency of 72.3 %.

  • PDF

Implicit Incompressible flow solver on Unstructured Hybrid grids (비구조 혼합 격자에서 내재적 방법을 이용한 비압축성 유동해석)

  • Kim J.;Kim Y.M;Maeng J.S
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.48-54
    • /
    • 1998
  • Three-dimensional incompressible Navier-Stokes equations have been solved by the node-centered finite volume method with unstructured hybrid grids. The pressure-velocity coupling is handled by the artificial compressibility algorithm and convective fluxes are obtained by Roe's flux difference splitting scheme with linear reconstruction of the solutions. Euler implicit method is used for time-integration. The viscous terms are discretised in a manner to handle any kind of grids such as tetrahedra, prisms, pyramids, hexahedra, or mixed-element grid. The numerical efficiency and accuracy of the present method is critically evaluated for several example problems.

  • PDF

Wave induced motion of a triangular tension leg platforms in deep waters

  • Abou-Rayan, A.M.;El-Gamal, Amr R.
    • Ocean Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.149-165
    • /
    • 2013
  • Tension leg platforms (TLP's) are highly nonlinear due to large structural displacements and fluid motion-structure interaction. Therefore, the nonlinear dynamic response of TLP's under hydrodynamic wave loading is necessary to determine their deformations and dynamic characteristics. In this paper, a numerical study using modified Morison Equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between all degrees of freedom on the dynamic behavior of a TLP. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark's beta integration scheme. The effect of wave characteristics was considered.

Quantum Theory of Amplified Total Internal Reflection by Evanescent Wave (에바네슨트파에 의해 증폭된 전반사의 양자이론)

  • Lee, Chang-Woo;Jaewoo Nho;Wonho Jhe
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.156-157
    • /
    • 2000
  • The amplification method using evanescent wave coupling has a long history and has been widely used as a new lasing method, especially, in the waveguide optics$^{(1)}$ . In particular, it has been observed experimentally that when the light wave propagating in a dielectric medium is totally reflected at the planar interface between the dielectric and a pumped active medium, the reflectance may be greater than unity, i.e., amplification is possible$^{(2)}$ . There were several attempts by other authors to explain this enhanced internal reflection (EIR) classically$^{(3)}$ . They commonly introduced a complex refractive index for the active medium with its imaginary part being negative, and this scheme was also used to describe an amplification process in a waveguide having active-cladding region$^{(4)}$ . However these theories are phenomenological, using macroscopic constants, and therefore a microscopic theory is needed to understand EIR in a fundamental level. (omitted)

  • PDF