• Title/Summary/Keyword: Coupling Bolt

Search Result 25, Processing Time 0.026 seconds

Evaluation for mechanical hardness of gas turbine rotor bolt according to deterioration of specimen (시편의 열화에 따른 가스터빈 로터볼트 기계적 강도평가)

  • Gil, D.S.;Ahn, Y.S.;Park, S.K.
    • Journal of Power System Engineering
    • /
    • v.15 no.4
    • /
    • pp.19-24
    • /
    • 2011
  • The operational efficiency of domestic gas turbine is about 25% and it is now in the trend of the gradual growth in spite of the severe temperature, frequent starting and shutdown according to the environmental management and the energy-efficient use. Rotor bolts of gas turbine in power plants have been the cause of defects because these gas turbines have been operated for a long time under the high pressure and temperature environment experiencing the aging change and stress concentration of the bonded part. The connection parts of the bolt revealed various failure shape and these parts were elongated under very low pressure when operated in the relaxed condition. The cause is in the lack of the metal distribution in the bottle lack area and the cap screw of the bolt is broken totally in case that the nut is fastened in most cases. Gas turbine rotor bolts are connected to the rotor wheel and these bolts caused the vibration, the bulk accident of the rotor in the event that the coupling power among these bolts was relaxed. Therefore, we would like to evaluate the soundness of the main part of the gas turbine rotor bolt through the measurement of the inner condition change along with the mechanic deterioration and temperature, stress in the gas turbine rotor material.

Seismic behavior of strengthened reinforced concrete coupling beams by bolted steel plates, Part 1: Experimental study

  • Zhu, Y.;Su, R.K.L.;Zhou, F.L.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.149-172
    • /
    • 2007
  • An experimental study of five full-scale coupling beam specimens has been conducted to investigate the seismic behavior of strengthened RC coupling beams by bolted side steel plates using a reversed cyclic loading procedure. The strengthened coupling beams are fabricated with different plate thicknesses and shear connector arrangements to study their respective effects on load-carrying capacity, strength retention, stiffness degradation, deformation capacity, and energy dissipation ability. The study revealed that putting shear connectors along the span of coupling beams produces no significant improvement to the structural performance of the strengthened beams. Translational and rotational partial interactions of the shear connectors that would weaken the load-carrying capacity of the steel plates were observed and measured. The hierarchy of failure of concrete, steel plates, and shear connectors was identified. Furthermore, detailed effects of plate buckling and various arrangements of shear connectors on the post-peak behavior of the strengthened beams are discussed.

Robust Design for Parts of Induction Bolt Heating System (유도가열시스템의 구성부품에 대한 강건설계)

  • Kim, Doo Hyun;Kim, Sung Chul;Lee, Jong Ho;Kang, Moon Soo;Jeong, Cheon Kee
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.10-17
    • /
    • 2021
  • This paper presents the robust design of each component used in the development of an induction bolt heating system for dismantling the high-temperature high-pressure casing heating bolts of turbines in power plants. The induction bolt heating system comprises seven assemblies, namely AC breaker, AC filter, inverter, transformer, work coil, cable, and CT/PT. For each of these assemblies, the various failure modes are identified by the failure mode and effects analysis (FMEA) method, and the causes and effects of these failure modes are presented. In addition, the risk priority numbers are deduced for the individual parts. To ensure robust design, the insulated-gate bipolar transistor (IGBT), switched-mode power supply (SMPS), C/T (adjusting current), capacitor, and coupling are selected. The IGBT is changed to a field-effect transistor (FET) to enhance the voltage applied to the induction heating system, and a dual-safety device is added to the SMPS. For C/T (adjusting current), the turns ratio is adjusted to ensure an appropriate amount of induced current. The capacitor is replaced by a product with heat resistance and durability; further, coupling with a water-resistant structure is improved such that the connecting parts are not easily destroyed. The ground connection is chosen for management priority.

Requirement analysis for Development of the Bolt-type Rebar Coupler (볼트 접합형 철근 이음장치 개발을 위한 요구조건 분석)

  • Lim, Chae-Yeon;Joo, Jin-Kyu;Lee, Goon-Jae;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.169-170
    • /
    • 2011
  • In the connection of green frame, the bottom rebar of the precast concrete beam needs joint or anchorage to ensure structural integrity. However, given the characteristics of composite precast concrete joint, enough length over which rebar can be anchored or lap-spliced is not secured. In addition, due to issues with constructability, cost or quality, it is difficult to apply welding or mechanical connection techniques. Therefore, this study analyze the requirement for a bolt-type rebar coupler as a solution for the coupling issue between the lower rebars of green frame beam. The requirement for bolt-type rebar coupler proposed herein will provide basic data for development studies of the rebar coupler.

  • PDF

A numerical investigation of the tensile behavior of the thread-fixed one-side bolted T-stubs at high temperature

  • You, Yang;Liu, Le;Jin, Xiao;Wang, Peijun;Liu, Fangzhou
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.605-619
    • /
    • 2022
  • The tensile behavior of the Thread-fixed One-side Bolt (TOB) at high temperatures was studied using the Finite Element Modeling (FEM) to explore the structural responses that could not be measured in tests. The accuracy of the FEM was verified using the test results from the failure mode, load-displacement curve as well as yielding load. Three typical failure modes of TOB connected T-stubs were observed, which were the Flange Yielding (FY), the Bolt Failure (BF) and the Coupling Failure mode (CF). The influence of the flange thickness tb and the temperature θ on the tensile behavior of the T-stub were discussed. The initial stiffness and the yielding load decreased with the increase of the temperature. The T-stubs almost lost their resistance when the temperature exceeded 700℃. The failure modes of T-stubs were mainly decided by the flange thickness, which relates to the anchorage of the hole threads and the bending resistance of flange. The failure mode could also be changed by the high temperature. Design equations in EN 1993-1-8 were modified and verified by the FEM results. The results showed that these equations could predict the failure mode and the yielding load at different temperatures with satisfactory accuracy.

A Study on Design of Underwater Acoustic Transducers Using the Electro-mechanical Coupling Analysis Code ATILA (전기-기계 연성해석 코드 ATILA를 이용한 수중 음향 트랜스듀서 설계)

  • Lee, Jeong-min;Cho, Yo-han;Kim, Jung-suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1211-1216
    • /
    • 2005
  • Underwater acoustic transducers are widely used for SONAR application, whose important design parameters are shapes. materials, dimensions and supporting structures. Practical design method of transducers consists of manufacturing, experiments and modifications so that it requires much time and expenses. In this study, an analytical method was developed for the Tonpilz type transducers using the commercial finite element analysis code ATILA which can solve the electro-mechanical coupling problems. A finite element model was established including the transducer elements such as ceramic stack, head mass, tail mass, tensile bolt, and molding layers. The proposed model was verified and modified by comparing the in-air and in-water test results of prototypes. The developed analysis method will be effectively used for the sensitivity analysis of design parameters in transducer design process.

Design of Propulsion Shafting System for Controllable Pitch Propeller (I : Latout Design with Sizing) (가변추진기 추진축계시스템의 설계 (제 I 보 : 외형설계 ))

  • 김기인;전효중;박명규;김정렬
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.129-134
    • /
    • 2002
  • This study is focused on the layout design with sizing for the main propulsion shafting with controllable pitch propeller system. For appropriate design and successful manufacturing of controllable pitch Propeller system, it is based on specifications to be required from the customer as well as the stresses calculation and analysis of main propulsion system for hollow shafting. And it must be performed according to the U.S military specifications MIL-STD-2189(SH) with drawing of NAVSHIPS 803-2145807, and also the stress analysis by applying safety factor. The results are as follows : 1. For the main propulsion system with controllable pitch propeller, it is designed the following items propeller diameter, hub diameter, dimensions of oil distribution or actuating unit based on shaft mounting type, diameters of propeller and intermediate shaft, dimension of split muff coupling, coupling flange thickness and of coupling bolt diameter. 2. As the results, we can get complete our own design ability for the main propulsion shafting with controllable pitch propeller system with critical data which are necessary to establish shafting arrangement from the ship building companies.

  • PDF

Analysis and Correction of Through-bolt End-region Overheating and Breakdown Failure in a Large Tubular Hydro-generator

  • Zhou, Zhi-ting;Fan, Zhen-nan;Li, Jian-fu;Wen, Kun;Zhang, Bide;Wang, Tao;Xia, Yan-kun;Sun, Zhang;Yao, Bing
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2292-2300
    • /
    • 2018
  • A field-circuit coupling model of a typical faulty generator is established to correct through-bolt end-region overheating and breakdown failure in a tubular hydro-generator. Using the model, eddy current loss and electromagnetic forces on through bolts under normal and failure conditions are analyzed and compared and the natural frequency of a through bolt is determined. Based on the analysis results, the causative mechanism of failure is revealed and targeted improvement design measures are proposed. The numerical results are found to be consistent with the actual fault characteristics, validating the design measure improvements. The results are useful in improving the design and manufacturing standards and enhancing the operational reliability of large tubular hydro-generators.

A Study on Estimating of Fretting Wear of a Spline Coupling (스플라인 커플링의 프레팅 마멸 예측에 관한 연구)

  • Kim, Eung-Jin;Lee, Sang-Don;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.256-260
    • /
    • 2009
  • Fretting is a kind of wear which effects on reliability and durability. When machine parts are joined joint in parts such as a bolt or a rivet or a pin, fretting phenomenon is occurred by micro relative movement. When fretting occurs in joint parts, there is wear which is the cause of fatigue crack. Recently, although the ways of assessment of fatigue and damage tolerance are established, there is no way to evaluate fatigue crack initiation life by fretting phenomenon. Consequently, the prediction of life and prevention plan caused by fretting are needed to improve reliability. The objective of this paper is to predict fretting wear by using a experimental method and contact analysis considering wear process. For prediction of fretting wear volume, systematic and controlled experiments with a disc-plate contact under gross slip fretting conditions were carried out. A modified Archard equation is used to calculate wear depths from the contact pressure and stroke using wear coefficients obtained from the disc-plate fretting tests.

Tonpilz Type Underwater Acoustic Transducers Design using Finite Element Method (유한요소법을 이용한 Tonpilz형 수중 음향 트랜스듀서 설계)

  • Cho, Yo-Han;Kim, Jung-Suk;Lee, Jeong-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.247-250
    • /
    • 2005
  • Underwater acoustic transducers are widely used for SONAR application, whose important design parameters are shapes, materials, dimensions and supporting structures. Practical design method of transducers consists of manufacturing, experiments and modifications so that It requires much time and expenses. In this study, an analytical method was developed for the Tonpilz type transducers using the commercial finite element analysis code ATILA which can solve the electro-mechanical coupling Problems. A finite element model was established including the transducer elements such as ceramic stack, head mass, tall mass, tensile bolt, and molding layers. The proposed model was verified and modified by comparing the in-air and in-water test results of prototypes. The developed analysis method will be effectively used for the sensitivity analysis of design parameters in transducer design process.

  • PDF