• Title/Summary/Keyword: Coupled-test

Search Result 828, Processing Time 0.031 seconds

Turbopump+Gas generator Open-loop coupled test (터보펌프+가스발생기 개회로 연계시험)

  • Kim, Seung-Han;Nam, Chang-Ho;Kim, Cheul-Woong;Moon, Yoon-Wan;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.125-128
    • /
    • 2008
  • As a interstage of the 30tonf level LOx/kerosene liquid rocket engine development, turbopump-gas generator open-loop coupled tests are performed. Test schematic and test results of open-loop coupled tests are presented. In engine system operation environment simulating combustion chamber by flow control orifice, chill-down procedure, startup characteristics, nominal operability of turbopump+gas generator open-loop coupled Test Plant are confirmed The results of open-loop coupled test were used for the preparation on turbopump+gas generator closed-loop test.

  • PDF

Study on Turbopump-Gas Generator Open-Loop Coupled Test (터보펌프-가스발생기 개회로 연계시험 연구)

  • Kim, Seung-Han;Nam, Chang-Ho;Kim, Cheul-Woong;Moon, Yoon-Wan;Seol, Woo-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.563-568
    • /
    • 2010
  • Turbopump-gas generator open-loop coupled tests are performed during the development of a 30tonf-LOx/Kerosene rocket engine. In the turbopump-gas generator open-loop tests, the propellants to gas generator are supplied from the outlets of turbopump, while the gas exhausted from the gas generator is vented out to the atmosphere, instead of being used to turbine driving. This paper presents the objectives, procedure, and results of the open-loop coupled test, in addition to a schematic representation of the test apparatus and the operating conditions for the test facility system and control system. The results of turbopump-gas generator open-loop coupled test confirm chill-down procedure, startup characteristics, nominal operability and smooth shutdown of the open-loop coupled Test Plant in test conditions simulating engine system operation environment.

Comparison of fully coupled hydroelastic computation and segmented model test results for slamming and whipping loads

  • Kim, Jung-Hyun;Kim, Yonghwan;Korobkin, Alexander
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1064-1081
    • /
    • 2014
  • This paper presents a numerical analysis of slamming and whipping using a fully coupled hydroelastic model. The coupled model uses a 3-D Rankine panel method, a 1-D or 3-D finite element method, and a 2-D Generalized Wagner Model (GWM), which are strongly coupled in time domain. First, the GWM is validated against results of a free drop test of wedges. Second, the fully coupled method is validated against model test results for a 10,000 twenty-foot equivalent unit (TEU) containership. Slamming pressures and whipping responses to regular waves are compared. A spatial distribution of local slamming forces is measured using 14 force sensors in the model test, and it is compared with the integration of the pressure distribution by the computation. Furthermore, the pressure is decomposed into the added mass, impact, and hydrostatic components, in the computational results. The validity and characteristics of the numerical model are discussed.

Study on Turbopump and Gas Generator Coupled Tests (터보펌프+가스발생기 연계시험 연구)

  • Kim, Seung-Han;Nam, Chang-Ho;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.155-158
    • /
    • 2007
  • As a secondary stage of the liquid rocket engine development test, turbopump-gas generator powerpack tests are being performed. The schematics of the test hardware and the test facility for the TP+GG coupled test are presented. The results of a preliminary test results for the verification of the propellant supply system of the test facility are also presented. Based on the preliminary tests results, the verification of the propellants supply systems of the facility system was performed.

  • PDF

A Parallel Test Structure for eDRAM-based Tightly Coupled Memory in SoCs (시스템 온 칩 내 eDRAM을 사용한 Tightly Coupled Memory의 병렬 테스트 구조)

  • Kook, In-Sung;Lee, Jae-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.3
    • /
    • pp.209-216
    • /
    • 2011
  • Recently the design of SoCs(System-on-Chips) in which TCM is embedded for high speed operation increases rapidly. In this paper, a parallel test structure for eDRAM-based TCM embedded in SoCs is proposed. In the presented technique, the MUT (Memory Under Test) is changed to parallel structure and it increases testability of MUT with boundary scan chains. The eDRAM is designed in structure for parallel test so that it can be tested for each modules. Dynamic test can be performed based on input-output data. The proposed techniques are verified their performance by circuits simulation.

Design of Turbopump+Gas Generator Coupled Test (터보펌프+가스발생기 연계시험 설계)

  • Kim, Seung-Han;Nam, Chang-Ho;Kim, Cheol-Woong;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.196-200
    • /
    • 2006
  • This paper describes the current development status of the major subsystems, turbopump and gas generator, for a turbopump-fed liquid oxygen-kerosene rocket engine system. As a secondary stage of the liquid rocket engine development test, turbopump-gas generator powerpack tests are planned. The schematics of the test hardware and the test facility for the TP+GG coupled test are presented. The results of a preliminary analysis for operating regimes of the TP+GG coupled test are also presented.

  • PDF

Performance Analysis and Test of according to INS/GPS Integration Methods (INS/GPS 결합방식에 따른 성능분석 및 시험)

  • No, Jung-Ho;Jin, Yong;Cho, Sung-Yoon;Moon, Sung-Jae;Park, Chan-Guk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.94-94
    • /
    • 2000
  • In this paper, the performance of INS/GPS integration is analyzed. Generally the integration method is classified into two method. One is loosely coupled integration, Another is tightly coupled integration. For the simulation, the error model of Kalman fitter is defined and the result of simulation is analyzed. When the number of visible satellites is less than four, the error of tightly coupled integration is smaller than that of loosely coupled integration. To very the result of simulation, van test that use LP-81 IMU and Millen3151R GPS receiver is carried out.

  • PDF

A Test Design and Configuration for Turbopump and Gas Generator Coupled Test (터보펌프 가스발생기 연계시험에서의 시험영역 설정과 설비 설계)

  • Nam, Chang-Ho;Kim, Cheul-Woong;Kim, Seung-Han;Park, Soon-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.107-110
    • /
    • 2008
  • The test range for turbopump and gas generator coupled test was determined considering the engine system test area which cover the qualification and development. Based on the test range, we determined the required loss coefficient for the throttle valves and lines.

  • PDF

A Characteristic Analysis of High Pressure and High Temperature 3-way Ball Valve (고온.고압용 3-way 볼밸브의 특성해석)

  • Lee, Joon-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.180-184
    • /
    • 2012
  • 3-way ball valves have been mostly used for high temperature/high pressure valves using in petrochemical carriers and oil tankers, which requires high quality products with confidentiality and durability. As a larger disaster may be generated by leakage of oil or gas from valves, thus the present research applied a numerical analysis method with thermal-structural coupled field analysis and the performance test. The Max stress by parts was confirmed through thermal-structural coupled field analysis and develop the 3-way ball valve design, which is safe on operating condition. And its performance was verified by carrying out pressure test, leakage test and durability test for the manufactured 3-way ball valves with satisfying it's regulations.

Bridge-vehicle coupled vibration response and static test data based damage identification of highway bridges

  • Zhu, Jinsong;Yi, Qiang
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.75-90
    • /
    • 2013
  • In order to identify damage of highway bridges rapidly, a method for damage identification using dynamic response of bridge induced by moving vehicle and static test data is proposed. To locate damage of the structure, displacement energy damage index defined from the energy of the displacement response time history is adopted as the indicator. The displacement response time histories of bridge structure are obtained from simulation of vehicle-bridge coupled vibration analysis. The vehicle model is considered as a four-degree-of-freedom system, and the vibration equations of the vehicle model are deduced based on the D'Alembert principle. Finite element method is used to discretize bridge and finite element model is set up. According to the condition of displacement and force compatibility between vehicle and bridge, the vibration equations of the vehicle and bridge models are coupled. A Newmark-${\beta}$ algorithm based professional procedure VBAP is developed in MATLAB, and used to analyze the vehicle-bridge system coupled vibration. After damage is located by employing the displacement energy damage index, the damage extent is estimated through the least-square-method based model updating using static test data. At last, taking one simply supported bridge as an illustrative example, some damage scenarios are identified using the proposed damage identification methodology. The results indicate that the proposed method is efficient for damage localization and damage extent estimation.