• Title/Summary/Keyword: Coupled shear wall structure

Search Result 30, Processing Time 0.113 seconds

Study of Earthquake Resilient RC Shear Wall Structures

  • Jiang, Huanjun;Li, Shurong
    • 국제초고층학회논문집
    • /
    • 제10권3호
    • /
    • pp.211-218
    • /
    • 2021
  • A new type of earthquake resilient reinforced concrete (RC) shear wall structure, installed with replaceable coupling beams and replaceable corner components at the bottom of wall piers, is proposed in this study. At first, the mechanical behavior of replaceable components, such as combined dampers and replaceable corner component, is studied by cyclic loading tests on them. Then, cycling loading tests are conducted on one conventional coupled shear wall and one new type of coupled shear wall with replaceable components. The test results indicate that the damage of the new type of coupled shear wall concentrates on replaceable components and the left parts are well protected. Finally, a case study is introduced. The responses of one conventional frame-tube structure and one new type of structure installed with replaceable components under the wind and the earthquake are compared, which verify that the performance of new type of structure is much better than the conventional structure.

Structural Shear Wall Systems with Metal Energy Dissipation Mechanism

  • Li, Guoqiang;Sun, Feifei;Pang, Mengde;Liu, Wenyang;Wang, Haijiang
    • 국제초고층학회논문집
    • /
    • 제5권3호
    • /
    • pp.195-203
    • /
    • 2016
  • Shear wall structures have been widely used in high-rise buildings during the past decades, mainly due to their good overall performance, large lateral stiffness, and high load-carrying capacity. However, traditional reinforced concrete wall structures are prone to brittle failure under seismic actions. In order to improve the seismic behavior of traditional shear walls, this paper presents three different metal energy-dissipation shear wall systems, including coupled shear wall with energy-dissipating steel link beams, frame with buckling-restrained steel plate shear wall structure, and coupled shear wall with buckling-restrained steel plate shear wall. Constructional details, experimental studies, and calculation analyses are also introduced in this paper.

Dynamic behaviour of stiffened and damaged coupled shear walls

  • Meftah, S.A.;Tounsi, A.;Adda-Bedia, E.A.
    • Computers and Concrete
    • /
    • 제3권5호
    • /
    • pp.285-299
    • /
    • 2006
  • The free vibration of stiffened and damaged coupled shear walls is investigated using the mixed finite element method. The anisotropic damage model is adopted to describe the damage extent of the reinforced concrete shear wall element. The internal energy of a locally damaged shear wall element is derived. Polynomial shape functions established by Kwan are used to present the component of displacements vector on each point within the wall element. The principle of virtual work is employed to deduce the stiffness matrix of a damaged shear wall element. The stiffened system is reinforced by an additional stiffening beam at some level of the structure. This induces additional axial forces, and thus reduces the bending moments in the walls and the lateral deflection, and increases the natural frequencies. The effects of the damage extent and the stiffening beam on the free vibration characteristics of the structure are studied. The optimal location of the stiffening beam for increasing as far as possible the first natural frequency of vibration is presented.

Closed-form and numerical solution of the static and dynamic analysis of coupled shear walls by the continuous method and the modified transfer matrix method

  • Mao C. Pinto
    • Structural Engineering and Mechanics
    • /
    • 제86권1호
    • /
    • pp.49-68
    • /
    • 2023
  • This study investigates the static and dynamic structural analysis of symmetrical and asymmetrical coupled shear walls using the continuous and modified transfer matrix methods by idealizing the coupled shear wall as a three-field CTB-type replacement beam. The coupled shear wall is modeled as a continuous structure consisting of the parallel coupling of a Timoshenko beam in tension (with axial extensibility in the shear walls) and a shear beam (replacing the beam coupling effect between the shear walls). The variational method using the Hamilton principle is used to obtain the coupled differential equations and the boundary conditions associated with the model. Using the continuous method, closed-form analytical solutions to the differential equation for the coupled shear wall with uniform properties along the height are derived and a numerical solution using the modified transfer matrix is proposed to overcome the difficulty of coupled shear walls with non-uniform properties along height. The computational advantage of the modified transfer matrix method compared to the classical method is shown. The results of the numerical examples and the parametric analysis show that the proposed analytical and numerical model and method is accurate, reliable and involves reduced processing time for generalized static and dynamic structural analysis of coupled shear walls at a preliminary stage and can used as a verification method in the final stage of the project.

Seismic performance and design method of PRC coupling beam-hybrid coupled shear wall system

  • Tian, Jianbo;Wang, Youchun;Jian, Zheng;Li, Shen;Liu, Yunhe
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.83-96
    • /
    • 2019
  • The seismic behavior of PRC coupling beam-hybrid coupled shear wall system is analyzed by using the finite element software ABAQUS. The stress distribution of steel plate, reinforcing bar in coupling beam, reinforcing bar in slab and concrete is investigated. Meanwhile, the plastic hinges developing law of this hybrid coupled shear wall system is also studied. Further, the effect of coupling ratio, section dimensions of coupling beam, aspect ratio of single shear wall, total height of structure and the role of slab on the seismic behavior of the new structural system. A fitting formula of plate characteristic values for PRC coupling beams based on different displacement requirements is proposed through the experimental date regression analysis of PRC coupling beams at home and abroad. The seismic behavior control method for PRC coupling beam-hybrid coupled shear wall system is proposed based on the continuous connection method and through controlling the coupling ratio, the roof displacement, story drift angle of hybrid coupled shear wall system, displacement ductility of coupling beam.

프리캐스트 병렬 전단벽의 내진 설계에 관한 연구 (A Simplified Seismic Design Method of Precast Coupled Shear Wall)

  • 홍성걸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.65-74
    • /
    • 1998
  • In seismic design procedure of precast concrete structure, it is important to assign ductility requirement on the connection element for a favorable failure mechanism. The purpose of this paper is to propose a simplified procedure to determine the required ductility of coupling beam in coupled precast shear wall for a lateral displacement ductility at the top of a structure. This study shows that an equation for ductility of cloupling beam is introduced on the basis of several basic assumption.

  • PDF

LRB를 이용한 병렬전단벽 구조물의 지진응답제어 (Seismic Responses Control of Coupled Shear Wall Structures Using LRBs)

  • 박용구;김현수;고현;김민균;이동근
    • 한국지진공학회논문집
    • /
    • 제14권6호
    • /
    • pp.1-9
    • /
    • 2010
  • 대부분의 전단벽 구조물은 통로의 목적으로 개구부를 필요로 하게 되고 전단벽들 사이가 슬래브나 연결보로 연결된 병렬 전단벽의 형태를 띠게 된다. 이러한 구조물에 지진하중이 작용할 때 연결보에 과도한 전단력이 작용하여 연결보가 취성적으로 파괴되거나 전단벽이 먼저 항복하는 문제점이 발생할 수 있다. 이를 방지하기 위하여 연결보에 감쇠장치를 설치하게 되면 구조물의 진동제어효과와 더불어 연결보의 응력집중 및 취성적 파괴를 막을 수 있어서 내진성능 향상을 기대할 수 있다. 본 논문에서는 병렬전단벽 연결보 중앙부에 LRB (Lead Rubber Bearing)가 설치된 구조물의 지진응답제어효과 및 응력의 분포를 평가하여 구조적 효율성을 확인하고자 한다. 이를 위하여 병렬전단벽의 거동을 비교적 정확하게 모사할 수 있는 모형화 방법을 제안하였고, 제안된 모형화 방법을 통하여 지진하중을 받는 예제 병렬구조물에 대한 시간이력해석을 수행한 후 지진응답제어성능을 검토하였다.

Seismic Response Analysis of Reinforced Concrete Wall Structure Using Macro Model

  • Kim, Dong-Kwan
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권1호
    • /
    • pp.99-112
    • /
    • 2016
  • During earthquake, reinforced concrete walls show complicated post-yield behavior varying with shear span-to-depth ratio, re-bar detail, and loading condition. In the present study, a macro-model for the nonlinear analysis of multi-story wall structures was developed. To conveniently describe the coupled flexure-compression and shear responses, a reinforced concrete wall was idealized with longitudinal and diagonal uniaxial elements. Simplified cyclic material models were used to describe the cyclic behavior of concrete and re-bars. For verification, the proposed method was applied to various existing test specimens of isolated and coupled walls. The results showed that the predictions agreed well with the test results including the load-carrying capacity, deformation capacity, and failure mode. Further the proposed model was applied to an existing wall structure tested on a shaking table. Three-dimensional nonlinear time history analyses using the proposed model were performed for the test specimen. The time history responses of the proposed method agreed with the test results including the lateral displacements and base shear.

Investigation of the link beam length of a coupled steel plate shear wall

  • Gholhaki, M.;Ghadaksaz, M.B.
    • Steel and Composite Structures
    • /
    • 제20권1호
    • /
    • pp.107-125
    • /
    • 2016
  • Steel shear wall system has been used in recent years in tall buildings due to its appropriate behavior advantages such as stiffness, high strength, economic feasibility and high energy absorption capability. Coupled steel plate shear walls consist of two steel shear walls that are connected to each other by steel link beam at each floor level. In this article the frames of 3, 10, and 15 of (C-SPSW) floor with rigid connection were considered in three different lengths of 1.25, 2.5 and 3.75 meters and link beams with plastic section modulus of 100% to the panel beam at each floor level and analyzed using three pairs of accelerograms based on nonlinear dynamic analysis through ABAQUS software and then the performance of walls and link beams at base shear, drift, the period of structure, degree of coupling (DC) and dissipated energy evaluated. The results show that the (C-SPSW) system base shear increases with a decrease in the link beam length, and the drift, main period and dissipated energy of structure decreases. Also the link beam length has different effects on parameters of coupling degrees.

철골 커플링 보의 내진거동 (Seismic Behavior of Steel Coupling Beams)

  • 박완신;윤현도;황선경;한병찬;한민기;이종성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.93-96
    • /
    • 2004
  • Since a ductile coupled shear wall system is the primary seismic load resisting systems of many structures, a coupling beams of these system must exhibit excellent ductility and energy absorption capacity. In this paper, the seismic response of coupled shear wall system is discussed. The cyclic response of steel coupling beams embedded into reinforced concrete boundary elements was studied. Three half-scale subassemblies representing a portion of a prototype structure were designed. constructed, and tested. The main test variables were the connection details of hybrid coupled shear wall. These efforts have resulted in details for increasing the seismic capacity of steel coupling beam in the seismic behavior of buildings.

  • PDF