• 제목/요약/키워드: Coupled inductors

검색결과 51건 처리시간 0.025초

Design of Parallel-Operated SEPIC Converters Using Coupled Inductor for Load-Sharing

  • Subramanian, Venkatanarayanan;Manimaran, Saravanan
    • Journal of Power Electronics
    • /
    • 제15권2호
    • /
    • pp.327-337
    • /
    • 2015
  • This study discusses the design of a parallel-operated DC-DC single-ended primary-inductor converter (SEPIC) for low-voltage application and current sharing with a constant output voltage. A coupled inductor is used for parallel-connected SEPIC topology. Generally, two separate inductors require different ripple currents, but a coupled inductor has the advantage of using the same ripple current. Furthermore, tightly coupled inductors require only half of the ripple current that separate inductors use. In this proposed work, tightly coupled inductors are used. These produce an output that is more efficient than that from separate inductors. Two SEPICs are also connected in parallel using the coupled inductors with a single common controller. An analog control circuit is designed to generate pulse width modulation (PWM) signals and to fulfill the closed-loop control function. A stable output current-sharing strategy is proposed in this system. An experimental setup is developed for a 18.5 V, 60 W parallel SEPIC (PSEPIC) converter, and the results are verified. Results indicate that the PSEPIC provides good response for the variation of input voltage and sudden change in load.

A Novel Dual-Input Boost-Buck Converter with Coupled Inductors for Distributed Thermoelectric Generation Systems

  • Zhang, Junjun;Wu, Hongfei;Sun, Kai;Xing, Yan;Cao, Feng
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.899-909
    • /
    • 2015
  • A dual-input boost-buck converter with coupled inductors (DIBBC-CI) is proposed as a thermoelectric generator (TEG) power conditioner with a wide input voltage range. The DIBBC-CI is built by cascading two boost cells and a buck cell with shared inverse coupled filter inductors. Low current ripple on both sides of the TEG and the battery are achieved. Reduced size and power losses of the filter inductors are benefited from the DC magnetic flux cancellation in the inductor core, leading to high efficiency and high power density. The operational principle, impact of coupled inductors, and design considerations for the proposed converter are analyzed in detail. Distributed maximum power point tracking, battery charging, and output control are implemented using a competitive logic to ensure seamless switching among operational modes. Both the simulation and experimental results verify the feasibility of the proposed topology and control.

결합 인덕터를 갖는 플라잉-커패시터 모듈러 멀티레벨 컨버터 (Flying-Capacitor Modular Multilevel Converters with Coupled Inductors)

  • 리덕중;이동춘
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.288-289
    • /
    • 2018
  • In this paper, the coupled inductor scheme instead of noncoupled inductors is suggested to reduce the dimension, weight and cost of the magnetic core. The simulation results have verified the effectiveness of the flying-capacitor MMC with coupled inductors and its control method for medium-voltage induction motor drives at low-speed operation.

  • PDF

중전압 전동기 구동시스템을 위한 결합 인덕터를 갖는 플라잉 커패시터 MMC (Flying-Capacitor Modular Multilevel Converters with Coupled Inductors for Medium-Voltage Motor Drive System)

  • 리덕중;이동춘
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 추계학술대회
    • /
    • pp.173-174
    • /
    • 2018
  • This paper proposes the coupled inductor instead of four non-coupled inductors in each leg of the flying-capacitor modular multilevel converter (MMC) to reduce the dimension, weight and cost of the magnetic core. The simulation results have verified the effectiveness of the proposed coupled inductor.

  • PDF

Zero-Voltage-Transition Synchronous DC-DC Converters with Coupled Inductors

  • Rahimi, Akbar;Mohammadi, Mohammad Reza
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.74-83
    • /
    • 2016
  • A new family of zero-voltage-transition converters with synchronous rectification is introduced in this study. Soft switching condition for all the converter operating points is provided in the proposed converters. The reverse recovery losses of the rectifier switch body diode are also eliminated. In comparison with the main switch voltage stress, the auxiliary switch voltage stress is reduced significantly. The auxiliary switch does not need the floating gate drive. The auxiliary inductor is coupled with the main converter inductor, and the leakage inductor is used as the resonance inductor. Thus, all inductors of the proposed converter can be implemented on a single core. The other features of the proposed converters include no extra voltage and current stresses on the main converter semiconductor elements. Theoretical analysis for a synchronous buck converter is presented in detail, and the validity of the theoretical analysis is justified with the experimental results of a prototype buck converter with 180 W and 80 V to 30 V.

보빈 적층 방식의 다중 공유결합 인덕터를 이용한 4병렬 스위칭 정류기에 관한 연구 (A Study on the Expandable Bobbin Type Multiple Integrated Coupled-Inductor Applied 4-Pralleled Switching Rectifier)

  • 유정상;안태영
    • 반도체디스플레이기술학회지
    • /
    • 제18권4호
    • /
    • pp.18-24
    • /
    • 2019
  • In this paper, expandable bobbin type multiple integrated coupled-inductor applied 4-paralled switching rectifier was proposed. To design the proposed inductor easily, inductance designing formula was derived through magnetic circuit analysis of the 4-paralleled integrated coupled-inductor. Furthermore, to verify practicality of the proposed inductor, it was applied in 600W class 4-paralleled interleaved switching rectifier, and the steady-state characteristics of the proposed inductor and discrete inductors were compared. Consequently, it was showed that the proposed inductor can replace the conventional discrete inductors with alternative electrical characteristic standard, hence miniaturization of the SMPS can be achieved. From the test result, test circuit with the proposed inductor showed maximum 97.1% of power conversion efficiency and under 18W of power loss where the circuit with discrete inductors showed 96.7% and 20W respectively.

커플드 인덕터를 활용하여 출력 전류 리플을 저감하는 LLC 공진형 컨버터에 관한 연구 (A Study on LLC Resonant Converter Employing Coupled Inductor to Reduce Output Current Ripple)

  • 이용철;강민혁;강찬호;홍성수
    • 전력전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.208-216
    • /
    • 2018
  • In this paper, an LLC resonant converter employing two coupled inductors on the secondary side of the converter is proposed. The conventional LLC converter exhibits serious power loss during secondary winding of the transformer because of generation of tremendous output current ripples. To overcome this problem, an LLC resonant converter with a current doubler as a rectifying circuit was recently proposed. However, the current-doubler rectifying circuit requires coupled inductors with a high coupling ratio to retain the designed resonance characteristics. Therefore, an additional hardware filter is required at the output stage to address large output current ripples. Additional design procedures are also necessary because the inductance component of the added filter affects the designed resonant network. To solve this issue, an LLC resonant converter employing two coupled inductors is proposed in this paper. Mathematical analysis shows that the proposed secondary-side current-doubler circuit does not affect the designed resonance characteristics. The operating principles and theoretical analyses are proven through a simulation and experiments with a 54 V/28 A prototype.

A Ripple-free Input Current Interleaved Converter with Dual Coupled Inductors for High Step-up Applications

  • Hu, Xuefeng;Zhang, Meng;Li, Yongchao;Li, Linpeng;Wu, Guiyang
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.590-600
    • /
    • 2017
  • This paper presents a ripple-free input current modified interleaved boost converter for high step-up applications. By integrating dual coupled inductors and voltage multiplier techniques, the proposed converter can reach a high step-up gain without an extremely high turn-ON period. In addition, a very small auxiliary inductor employed in series to the input dc source makes the input current ripple theoretically decreased to zero, which simplifies the design of the electromagnetic interference (EMI) filter. In addition, the voltage stresses on the semiconductor devices of the proposed converter are efficiently reduced, which makes high performance MOSFETs with low voltage rated and low resistance $r_{DS}$(ON) available to reduce the cost and conduction loss. The operating principles and steady-state analyses of the proposed converter are introduced in detail. Finally, a prototype circuit rated at 400W with a 42-50V input voltage and a 400V output voltage is built and tested to verify the effectiveness of theoretical analysis. Experimental results show that an efficiency of 95.3% can be achieved.

New ZVZCT Bidirectional DC-DC Converter Using Coupled Inductors

  • Qian, Wei;Zhang, Xi;Li, Zhe;Jin, Wenqiang;Wiedemann, Jochen
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.11-23
    • /
    • 2019
  • In this study, a novel zero voltage zero current transition (ZVZCT) bidirectional DC-DC converter is proposed by employing coupled inductors. This converter can turn the main switch on at ZVZCT and it can turn it off with zero voltage switching (ZVS) for both the boost and buck modes. These characteristics are obtained by using a simple auxiliary sub-circuit regardless of the power flow direction. In the boost mode, the auxiliary switch achieves zero current switching (ZCS) turn-on and ZVS turn off. Due to the coupling inductors, this converter can make further efficiency improvements because the resonant energy in the capacitor or inductor can be transferred to the load. The main diode operates with ZVT turn-on and ZCS turn-off in the boost mode. For the buck mode, there is a releasing circuit to conduct the currents generated by the magnetic flux leakage to the output. The auxiliary switch turns on with ZCS and it turns off with ZVT. The main diode also turns on with ZVT and turns off with ZCS. The design method and operation principles of the converter are discussed. A 500 W experimental prototype has been built and verified by experimental results.

A Novel High Step-Up Converter with a Switched-Coupled-Inductor-Capacitor Structure for Sustainable Energy Systems

  • Liu, Hongchen;Ai, Jian;Li, Fei
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.436-446
    • /
    • 2016
  • A novel step-up DC-DC converter with a switched-coupled-inductor-capacitor (SCIC) which successfully integrates three-winding coupled inductors and switched-capacitor techniques is proposed in this paper. The primary side of the coupled inductors for the SCIC is charged by the input source, and the capacitors are charged in parallel and discharged in series by the secondary windings of the coupled inductor to achieve a high step-up voltage gain with an appropriate duty ratio. In addition, the passive lossless clamped circuits recycle the leakage energy and reduce the voltage stress on the main switch effectively, and the reverse-recovery problem of the diodes is alleviated by the leakage inductor. Thus, the efficiency can be improved. The operating principle and steady-state analyses of the converter are discussed in detail. Finally, a prototype circuit at a 50 kHz switching frequency with a 20-V input voltage, a 200-V output voltage, and a 200-W output power is built in the laboratory to verify the performance of the proposed converter.