• Title/Summary/Keyword: Coupled equations of motion

Search Result 247, Processing Time 0.025 seconds

Analysis of an Elastic Boom Effect on the Dynamic Response of a Cargo (중량물의 동적 거동에 미치는 크레인 붐(boom)의 탄성 영향 분석)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.421-429
    • /
    • 2010
  • In this paper, in order to analyze the dynamic response of a floating crane when it lifts a heavy cargo, the boom of the floating crane is considered as an elastic beam. The boom is divided into elements based on finite element formulation and the floating frame of reference formulation and nodal coordinates are employed to model the boom as a flexible body. As an extension of the previous study, in order to consider spatial motion in waves, the coupled equations of motions of the 6 degree of freedom (DOF) floating crane and 6 DOF cargo are developed based on the flexible multibody system dynamics. The 3 dimensional deformation of the elastic boom is considered with 18 DOF. The dynamic simulation of the floating crane and the cargo is performed under regular wave conditions with various cargo weights. Finally, the effects of the elastic boom on lifting cargo are discussed by comparing the simulation results between the elastic boom and a rigid boom.

Behaviour of asymmetric building with double variable frequency pendulum isolator

  • Soni, D.P.;Mistry, B.B.;Panchal, V.R.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.61-84
    • /
    • 2010
  • Presented in this paper is the behaviour of asymmetric building isolated by the double variable frequency pendulum isolator (DVFPI). The DVFPI is an adoption of single variable frequency pendulum isolator (VFPI). The geometry and coefficient of friction of top and bottom sliding surfaces can be unequal. The governing equations of motion of the building-isolation system are derived and solved in incremental form. The analysis duly considers the interaction of frictional forces in the two principal directions developed at each sliding surface of the DVFPI. In order to investigate the behaviour of the base isolation using the DVFPI, the coupled lateral-torsional response is obtained under different parametric variations for a set of six far-fault earthquake ground motions and criterion to optimize its performance is proposed. Further, influences of the initial time period, coefficient of friction and frequency variation factors at the two sliding surfaces are investigated. The numerical results of the extensive parametric study help in understanding the torsional behaviour of the structure isolated with the double sliding surfaces as in the DVFPI. It is found that the performance of the DVFPI can be optimized by designing the top sliding surface initially softer and smoother relative to the bottom one.

Aeroelastic Stability Analysis of Hingeless Rotor Blades with Composite Flexures

  • Kim, Seung-Jo;Kim, Ki-Tae;Jung, Sung-Nam
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.512-521
    • /
    • 2002
  • The flap-lag-torsion coupled aeroelastic behavior of a hingeless rotor blade with composite flexures in hovering flight has been investigated by using the finite element method. The quasisteady strip theory with dynamic inflow effects is used to obtain the aerodynamic loads acting on the blade. The governing differential equations of motion undergoing moderately large displacements and rotations are derived using the Hamilton's principle. The flexures used in the present model are composed of two composite plates which are rigidly attached together. The lead-lag flexure is located inboard of the flap flexure. A mixed warping model that combines the St. Versant torsion and the Vlasov torsion is developed to describe the twist behavior of the composite flexure. Numerical simulations are carried out to correlate the present results with experimental test data and also to identify the effects of structural couplings of the composite flexures on the aeroelastic stability of the blade. The prediction results agree well with other experimental data. The effects of elastic couplings such as pitch-flap, pitch-lag, and flap-lag couplings on the stability behavior of the composite blades are also investigated.

Passive control of seismically excited structures by the liquid column vibration absorber

  • Konar, Tanmoy;Ghosh, Aparna Dey
    • Structural Engineering and Mechanics
    • /
    • v.36 no.5
    • /
    • pp.561-573
    • /
    • 2010
  • The potential of the liquid column vibration absorber (LCVA) as a seismic vibration control device for structures has been explored in this paper. In this work, the structure has been modeled as a linear, viscously damped single-degree-of-freedom (SDOF) system. The governing differential equations of motion for the damper liquid and for the coupled structure-LCVA system have been derived from dynamic equilibrium. The nonlinear orifice damping in the LCVA has been linearized by a stochastic equivalent linearization technique. A transfer function formulation for the structure-LCVA system has been presented. The design parameters of the LCVA have been identified and by applying the transfer function formulation the optimum combination of these parameters has been determined to obtain the most efficient control performance of the LCVA in terms of the reduction in the root-mean-square (r.m.s.) displacement response of the structure. The study has been carried out for an example structure subjected to base input characterized by a white noise power spectral density function (PSDF). The sensitivity of the performance of the LCVA to the coefficient of head loss and to the tuning ratio have also been examined and compared with that of the liquid column damper (LCD). Finally, a simulation study has been carried out with a recorded accelerogram, to demonstrate the effectiveness of the LCVA.

Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments

  • Zhao, Jing-Lei;Chen, Xu;She, Gui-Lin;Jing, Yan;Bai, Ru-Qing;Yi, Jin;Pu, Hua-Yan;Luo, Jun
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.797-808
    • /
    • 2022
  • This paper presents an investigation on the free vibration characteristics of functionally graded nanocomposite double-beams reinforced by single-walled carbon nanotubes (SWCNTs). The double-beams coupled by an interlayer spring, resting on the elastic foundation with a linear layer and shear layer, and is simply supported in thermal environments. The SWCNTs gradient distributed in the thickness direction of the beam forms different reinforcement patterns. The materials properties of the functionally graded carbon nanotube-reinforced composites (FG-CNTRC) are estimated by rule of mixture. The first order shear deformation theory and Euler-Lagrange variational principle are employed to derive the motion equations incorporating the thermal effects. The vibration characteristics under several patterns of reinforcement are presented and discussed. We conducted a series of studies aimed at revealing the effects of the spring stiffness, environment temperature, thickness ratios and carbon nanotube volume fraction on the nature frequency.

Optimal layout of a partially treated laminated composite magnetorheological fluid sandwich plate

  • Manoharan, R.;Vasudevan, R.;Jeevanantham, A.K.
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1023-1047
    • /
    • 2015
  • In this study, the optimal location of the MR fluid segments in a partially treated laminated composite sandwich plate has been identified to maximize the natural frequencies and the loss factors. The finite element formulation is used to derive the governing differential equations of motion for a partially treated laminated composite sandwich plate embedded with MR fluid and rubber material as the core layer and laminated composite plate as the face layers. An optimization problem is formulated and solved by combining finite element analysis (FEA) and genetic algorithm (GA) to obtain the optimal locations to yield maximum natural frequency and loss factor corresponding to first five modes of flexural vibration of the sandwich plate with various combinations of weighting factors under various boundary conditions. The proposed methodology is validated by comparing the natural frequencies evaluated at optimal locations of MR fluid pockets identified through GA coupled with FEA and the experimental measurements. The converged results suggest that the optimal location of MR fluid pockets is strongly influenced not only by the boundary conditions and modes of vibrations but also by the objectives of maximization of natural frequency and loss factors either individually or combined. The optimal layout could be useful to apply the MR fluid pockets at critical components of large structure to realize more efficient and compact vibration control mechanism with variable damping.

Vibration analysis of heterogeneous nonlocal beams in thermal environment

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.251-272
    • /
    • 2017
  • In this paper, the thermo-mechanical vibration characteristics of functionally graded (FG) nanobeams subjected to three types of thermal loading including uniform, linear and non-linear temperature change are investigated in the framework of third-order shear deformation beam theory which captures both the microstructural and shear deformation effects without the need for any shear correction factors. Material properties of FG nanobeam are assumed to be temperature-dependent and vary gradually along the thickness according to the power-law form. Hence, applying a third-order shear deformation beam theory (TSDBT) with more rigorous kinetics of displacements to anticipate the behaviors of FG nanobeams is more appropriate than using other theories. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. The obtained results are compared with those predicted by the nonlocal Euler-Bernoulli beam theory and nonlocal Timoshenko beam theory and it is revealed that the proposed modeling can accurately predict the vibration responses of FG nanobeams. The obtained results are presented for the thermo-mechanical vibration analysis of the FG nanobeams such as the effects of material graduation, nonlocal parameter, mode number, slenderness ratio and thermal loading in detail. The present study is associated to aerospace, mechanical and nuclear engineering structures which are under thermal loads.

Active Vibration Control of a Simply Supported Plate with Piezoelectric Sensors and Actuators - I. Theory (압전 센서와 액츄에이터를 이용한 단순지지 평판의 능동 진동제어 - I. 이론)

  • Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.25-39
    • /
    • 1992
  • Undesired vibratory motion of a simply supported plate is controlled with piezoelectric sensors and actuators. Appropriate dynamic equations of the sensor and actuator are derived and coupled with the dynamic equation of the plate for the construction of an active feedback vibration control system. Analytic solutions are obtained for amplitude response of the plate, reflecting the combined effect of external driving forces and piezoelectric control moments. Numerical examples are presented to illustrate the effectiveness of this approach for two types of external forces, i.e. a concentrated point load and a piezoelectric plate driver. Calculation results show that the sensors and actuators can be efficient tools to mitigate the sensitivity of the structure to external sources of vibration. The method investigated in this work is applicable to arbitrary external loading conditions and control algorithms.

  • PDF

Computer Simulation and Shape Design Sensitivity Analysis of the Valve inside the Reciprocal Compressor using Finite Element Model (유한 요소 모델을 이용한 왕복동식 압축기 밸브의 거동 해석 및 형상 설계 민감도 해석)

  • 이제원;왕세명;주재만;박승일;이성태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.796-801
    • /
    • 2002
  • The goal of this research is the shape design of the valve using a computer simulation. For an analysis a basic mathematical model describing compression cycle is considered as consisting of five sets of coupled equations. These are the volume equation (kinematics), valve dynamic equation (dynamics), ideal gas equation (thermodynamics), Bernoulli equation (fluid dynamics), and dynamic equation of fluid particle based on Helmholtz equation (acoustics). Valve motion is made by the superposition of free vibration modes obtained by the finite element method. That is, the eigenvalues and eigenvectors are the sufficient modeling factors fur the valve in the simulation program. Thus, to design a shape of the valve, shape design sensitivity through chain-ruled derivatives is considered from two sensitivity coefficients, one is the design sensitivity of the capability of compressor with respect to the eigenvalues of the valve, and the other is the design sensitivity of the eigenvalue with respect to the shape change of the valve. In this research, the continuum design sensitivity analysis concepts are used for the latter.

  • PDF

Application of Optimal Control Techniques to SWATH Motion Control (반잠수 쌍동선의 최적 운동제어기 설계)

  • Chan-Wook Park;Bo-Hyeon Heo;Chun-Tae Song
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.2
    • /
    • pp.65-77
    • /
    • 1994
  • This paper presents a derailed application procedure of the linear quadratic(LQ) theory for a SWATH heave and pitch control. A time domain model of coupled, linear time-invariant second order differential equations is derived from the frequency response model with the frequency dependent added mass and damping approximated as constant values at the heave natural frequency. Wave exciting forces are modeled as a sum of sinusoids. A systematic selection procedure of state and control weighting matrices is presented to obtain good transient behavior and acceptable fin movement. The validity of this controller design process is throughly investigated by simulations both in time domain and frequency domain and singular value plots of transfer function matrices. The finally designed control system shows good overall performances revealing that the applicability of the present study is proved successful.

  • PDF