• 제목/요약/키워드: Coupled electric-thermal numerical model

검색결과 6건 처리시간 0.017초

한국형 인공월면토(KLS-1) 마이크로파 소결을 위한 전기장-열 연계해석 모델 평가 (Assessment of the Coupled Electric-Thermal Numerical Model for Microwave Sintering of KLS-1)

  • 진현우;고규현;이장근;신휴성;김영재
    • 한국지반공학회논문집
    • /
    • 제38권5호
    • /
    • pp.35-46
    • /
    • 2022
  • 최근 지속가능한 달 표면 탐사 및 심우주 탐사를 위해 현지자원활용 개념이 주목받으며 월면토를 이용한 건설재료 생산 기술 개발 관련 연구들이 진행되고 있다. 특히, 마이크로파 소결 기술은 에너지 효율 측면에서 유리할 뿐 아니라 별도의 바인더를 필요로 하지 않는다는 장점이 있다. 본 연구에서는 한국형 인공월면토인 KLS-1에 마이크로파 소결 기술을 적용해 보았다. 향후 실제 건설재료로 활용 가능한 크기의 소결체 제작을 위해서는 균질도 확보가 매우 중요한 실정으로 마이크로파, 공동, 재료 간 상호작용에 관한 이해가 요구된다. 따라서 수많은 경우의 수에 관한 효율적 평가 및 장비가동 조건 정립 측면에서 수치모델의 활용은 매우 효율적인 방법이다. 본 연구에서는 전기장-열 연계 해석모델을 제안하고 있으며 교차검증 및 실험결과와의 비교 등을 통해 수치모델의 신뢰성을 검증하였다. 이는 향후 마이크로파 소결 기술을 적용한 건설재료 생산 시 효율적인 방법을 제시하는데 활용 가능할 것으로 판단된다.

Towards a reduced order model of battery systems: Approximation of the cooling plate

  • Szardenings, Anna;Hoefer, Nathalie;Fassbender, Heike
    • Coupled systems mechanics
    • /
    • 제11권1호
    • /
    • pp.43-54
    • /
    • 2022
  • In order to analyse the thermal performance of battery systems in electric vehicles complex simulation models with high computational cost are necessary. Using reduced order methods, real-time applicable model can be developed and used for on-board monitoring. In this work a data driven model of the cooling plate as part of the battery system is built and derived from a computational fluid dynamics (CFD) model. The aim of this paper is to create a meta model of the cooling plate that estimates the temperature at the boundary for different heat flow rates, mass flows and inlet temperatures of the cooling fluid. In order to do so, the cooling plate is simulated in a CFD software (ANSYS Fluent ®). A data driven model is built using the design of experiment (DOE) and various approximation methods in Optimus ®. The model can later be combined with a reduced model of the thermal battery system. The assumption and simplification introduced in this paper enable an accurate representation of the cooling plate with a real-time applicable model.

Numerical analysis of particle transport in low-pressure, low-temperature plasma environment

  • Kim, Heon Chang
    • 한국입자에어로졸학회지
    • /
    • 제5권3호
    • /
    • pp.123-131
    • /
    • 2009
  • This paper presents simulation results of particle transport in low-pressure, low-temperature plasma environment. The size dependent transport of particles in the plasma is investigated with a two-dimensional simulation tool developed in-house for plasma chamber analysis and design. The plasma model consists of the first two and three moments of the Boltzmann equation for ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The particle transport model takes into account all important factors, such as gravitational, electrostatic, ion drag, neutral drag and Brownian forces, affecting the motion of particles in the plasma environment. The particle transport model coupled with both neutral fluid and plasma models is simulated through a Lagrangian approach tracking the individual trajectory of each particle by taking a force balance on the particle. The size dependant trap locations of particles ranging from a few nm to a few ${\mu}m$ are identified in both electropositive and electronegative plasmas. The simulation results show that particles are trapped at locations where the forces acting on them balance. While fine particles tend to be trapped in the bulk, large particles accumulate near bottom sheath boundaries and around material interfaces, such as wafer and electrode edges where a sudden change in electric field occurs. Overall, small particles form a "dome" shape around the center of the plasma reactor and are also trapped in a "ring" near the radial sheath boundaries, while larger particles accumulate only in the "ring". These simulation results are qualitatively in good agreement with experimental observation.

  • PDF

온도 조절형 고주파 시스템 및 식염수 분사를 고려한 전극도자절제술용 전극의 수치 모델 개발 (Development of Numerical Model of Electrode for Radiofrequency Catheter Ablation Considering Saline Irrigation and Temperature-controlled Radiofrequency System)

  • 안진우;김영진;이승아;정하철;김경아;차은종;문진희
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권6호
    • /
    • pp.285-290
    • /
    • 2017
  • Radiofrequency catheter ablation is the interventional therapy that be employed to eliminate cardiac tissue caused by arrhythmias. During radiofrequency catheter ablation, The thrombus can occur at electrode tip if the temperature of tissue and electrode is excess $100^{\circ}C$. To prevent this phenomenon, we investigated numerical model of electrode for radiofrequency catheter ablation considering saline irrigation and temperature-controlled radiofrequency system. The numerical model is based on coupled electric-thermal-flow problem and solved by COMSOL Multiphysics software. The results of the models show that the dimensions of the thermal lesion are increased if the flow rate of the saline irrigation and the set temperature are increased. The surface width characterized to determine the thermal lesion isn't need to measure in temperature-controlled radiofrequency system due to convective heat transfer by saline irrigation at tissue-electrode interface.

열-전기-기계 하중을 받는 스마트 복합재 평판의 고차 지그재그 유한요소의 개발 및 성능 평가 (Development and Assessment of Higher Order Zig-zag Theory for smart composite plates under mechanical, thermal, and electric loads)

  • 오진호;조맹효
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.191-194
    • /
    • 2001
  • A partially coupled thermo-piezoelectric-mechanical triangular finite element model of composite laminates with surface bonded piezoelectric actuators, subjected to externally applied mechanical load, temperature change load, electric field load is developed. The governing differential equations are obtained by applying the principle of free energy and variational techniques. A higher order zigzag theory displacement field is employed to accurately capture the transverse shear and normal effects in laminated composite plates of arbitrary thickness. Nonconforming shape functions by Specht are employed in the transverse displacement variables. Numerical examples demonstrate the accuracy and efficiency of the proposed triangular plate element.

  • PDF

설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012)

  • 한화택;이대영;김사량;김현정;최종민;박준석;김수민
    • 설비공학논문집
    • /
    • 제25권6호
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.