• Title/Summary/Keyword: Coupled System

Search Result 3,226, Processing Time 0.032 seconds

Evolutionary computational approaches for data-driven modeling of multi-dimensional memory-dependent systems

  • Bolourchi, Ali;Masri, Sami F.
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.897-911
    • /
    • 2015
  • This study presents a novel approach based on advancements in Evolutionary Computation for data-driven modeling of complex multi-dimensional memory-dependent systems. The investigated example is a benchmark coupled three-dimensional system that incorporates 6 Bouc-Wen elements, and is subjected to external excitations at three points. The proposed technique of this research adapts Genetic Programming for discovering the optimum structure of the differential equation of an auxiliary variable associated with every specific degree-of-freedom of this system that integrates the imposed effect of vibrations at all other degrees-of-freedom. After the termination of the first phase of the optimization process, a system of differential equations is formed that represent the multi-dimensional hysteretic system. Then, the parameters of this system of differential equations are optimized in the second phase using Genetic Algorithms to yield accurate response estimates globally, because the separately obtained differential equations are coupled essentially, and their true performance can be assessed only when the entire system of coupled differential equations is solved. The resultant model after the second phase of optimization is a low-order low-complexity surrogate computational model that represents the investigated three-dimensional memory-dependent system. Hence, this research presents a promising data-driven modeling technique for obtaining optimized representative models for multi-dimensional hysteretic systems that yield reasonably accurate results, and can be generalized to many problems, in various fields, ranging from engineering to economics as well as biology.

Free Vibration Analysis of Two Identical Rectangular Plates Coupled with Fluid (유체로 연성된 동일한 두 직사각 평판의 고유진동 해석)

  • Jeong, Kyeong-Hoon;Lee, Seong-Cheol;Yoo, Gye-Hyoung
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.8-15
    • /
    • 2002
  • In order to investigate the vibration characteristics of fluid-structure interaction problem, we modeled two identical rectangular plates coupled with fluid. A commercial computer code, ANSYS was used to perform finite element analysis and FEM solutions were compared with the experimental results to verify the finite element model. As a result, comparison of FEM and experiment showed good agreement, and the transverse vibration modes, in-phase and out-of-Phase, were observed alternately in the fluid-coupled system. The effect of fluid gap size on the fluid-coupled natural frequency were investigated. It was shown that the mode numbers increased, the normalized natural frequencies monotonically increased. And it was also found that an increase of the fluid gap reduced the coupled natural frequencies for the in-phase modes but increased the coupled natural frequencies for the out-of phase modes, and eventually converged to the results of an infinite fluid gap.

Design of Parallel-Operated SEPIC Converters Using Coupled Inductor for Load-Sharing

  • Subramanian, Venkatanarayanan;Manimaran, Saravanan
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.327-337
    • /
    • 2015
  • This study discusses the design of a parallel-operated DC-DC single-ended primary-inductor converter (SEPIC) for low-voltage application and current sharing with a constant output voltage. A coupled inductor is used for parallel-connected SEPIC topology. Generally, two separate inductors require different ripple currents, but a coupled inductor has the advantage of using the same ripple current. Furthermore, tightly coupled inductors require only half of the ripple current that separate inductors use. In this proposed work, tightly coupled inductors are used. These produce an output that is more efficient than that from separate inductors. Two SEPICs are also connected in parallel using the coupled inductors with a single common controller. An analog control circuit is designed to generate pulse width modulation (PWM) signals and to fulfill the closed-loop control function. A stable output current-sharing strategy is proposed in this system. An experimental setup is developed for a 18.5 V, 60 W parallel SEPIC (PSEPIC) converter, and the results are verified. Results indicate that the PSEPIC provides good response for the variation of input voltage and sudden change in load.

Development of a Coupled Model for the Flood Inundation Simulation (홍수범람모의를 위한 내외수 연계모형 개발)

  • Kim Hyung-Jun;Cho Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1047-1052
    • /
    • 2005
  • The purpose of this study is developing a coupled model for the flood analysis. Firstly, the model(river model) describing the inundation in a river solves the two-dimensional Saint Venant equations with a finite difference method and it is possible moving boundary treatment. The other model(inland model) in developed based on the ILLUDAS model to describe the conveyance capacity of a stormwater sewer system. Finally, a coupled model is applied to a real situation. The newly developed coupled model simulates reasonably the flood event occurred in a river and a inland simultaneously

  • PDF

Analysis and Modeling of Parallel Three-Phase Boost Converters Using Three-Phase Coupled Inductor

  • Lim, Chang-Soon;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1086-1095
    • /
    • 2013
  • The main issue of parallel three-phase boost converters is reduction of the low- and high frequency circulating currents. Most present technologies concentrate on low frequency circulating current because the circulating current controller cannot mitigate the high frequency circulating current. In this paper, analytical approach of three-phase coupled inductor applied to parallel system becomes an important objective to effectively reduce the low- and high frequency circulating currents. The characteristics of three-phase coupled inductor based on a structure and voltage equations are mathematically derived. The modified voltage equations are then applied to parallel three-phase boost converters to develop averaged models in stationary coordinates and rotating coordinates. Based on the averaged modeling approach, design of the circulating current controller is presented. Simulation and experimental results demonstrate the effectiveness of the analysis and modeling for the parallel three-phase boost converters using three-phase coupled inductor.

Hydroelastic Effects in Vibration of Plate and Ship Hull Structures Contacted with Fluid

  • Lee, Jong-Soo;Song, Chang-Yong
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.76-88
    • /
    • 2011
  • The present study deals with the hydroelastic vibration analysis of structures in contact with fluid via coupled fluid-structure interaction (FSI) embedded with a finite element method (FEM) such that a structure displacement formulation is coupled with a fluid pressure-displacement formulation. For the preliminary study and validation of FEM based coupled FSI analysis, hydroelastic vibration characteristics of a rectangular plate in contact with fluid are first compared with the elastic vibration in terms of boundary condition and mode frequency. Numerical results from coupled FSI analysis have been shown to be rational and accurate, compared to energy method based theoretical solutions and experimental results. The effect of free surface on the vibration mode is numerically studied by changing the submerged depth of a rectangular plate. As a practical application, the hull structural vibration of 4,000 twenty-foot equivalent units (TEU) container ship is considered. Hydroelastic results of the ship hull structure are compared with those obtained from the elastic condition.

A De-Embedding Technique of a Three-Port Network with Two Ports Coupled

  • Pu, Bo;Kim, Jonghyeon;Nah, Wansoo
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.4
    • /
    • pp.258-265
    • /
    • 2015
  • A de-embedding method for multiport networks, especially for coupled odd interconnection lines, is presented in this paper. This method does not require a conversion from S-parameters to T-parameters, which is widely used in the de-embedding technique of multiport networks based on cascaded simple two-port relations, whereas here, we apply an operation to the S-matrix to generate all the uncoupled and coupled coefficients. The derivation of the method is based on the relations of incident and reflected waves between the input of the entire network and the input of the intrinsic device under test (DUT). The characteristics of the intrinsic DUT are eventually achieved and expressed as a function of the S-parameters of the whole network, which are easily obtained. The derived coefficients constitute ABCD-parameters for a convenient implementation of the method into cascaded multiport networks. A validation was performed based on a spice-like circuit simulator, and this verified the proposed method for both uncoupled and coupled cases.

Linear elastic mechanical system interacting with coupled thermo-electro-magnetic fields

  • Moreno-Navarro, Pablo;Ibrahimbegovic, Adnan;Perez-Aparicio, Jose L.
    • Coupled systems mechanics
    • /
    • v.7 no.1
    • /
    • pp.5-25
    • /
    • 2018
  • A fully-coupled thermodynamic-based transient finite element formulation is proposed in this article for electric, magnetic, thermal and mechanic fields interactions limited to the linear case. The governing equations are obtained from conservation principles for both electric and magnetic flux, momentum and energy. A full-interaction among different fields is defined through Helmholtz free-energy potential, which provides that the constitutive equations for corresponding dual variables can be derived consistently. Although the behavior of the material is linear, the coupled interactions with the other fields are not considered limited to the linear case. The implementation is carried out in a research version of the research computer code FEAP by using 8-node isoparametric 3D solid elements. A range of numerical examples are run with the proposed element, from the relatively simple cases of piezoelectric, piezomagnetic, thermoelastic to more complicated combined coupled cases such as piezo-pyro-electric, or piezo-electro-magnetic. In this paper, some of those interactions are illustrated and discussed for a simple geometry.

Free vibration analysis of concrete arch dams by quadratic ideal-coupled method

  • Rezaiee-Pajand, Mohammad;Sani, Ahmad Aftabi;Kazemiyan, Mohammad Sadegh
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.69-79
    • /
    • 2018
  • This paper is devoted to two new techniques for free vibration analysis of concrete arch dam-reservoir systems. The proposed schemes are quadratic ideal-coupled eigen-problems, which can solve the originally non-symmetric eigen-problem of the system. To find the natural frequencies and mode shapes, a new special-purpose eigen-value solution routine is developed. Moreover, the accuracy of the proposed approach is thoroughly assessed, and it is confirmed that the new scheme is very accurate under all practical conditions. It is also concluded that both decoupled and ideal-coupled strategy proposed in the previous works can be considered as special cases of the current more general procedure.

Hypersonic Panel Flutter Analysis Using Coupled CFD-CSD Method

  • Tran, Thanh Toan;Kim, Dong-Huyn;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.171-177
    • /
    • 2011
  • In this paper, a square simply supported panel flutter have been considered at high supersonic flow by using coupled fluid-structure (FSI) analysis that based on time domain method. The Reynolds-Average Navier Stokes (RANS) equation with Spalart-Allmaras turbulent model were applied for unsteady flow problems of panel flutter. A fully implicit time marching schemed based on the Newmark direct integration method is used for calculating the coupled aeroelastic governing equations of it. In addition, the SOL 145 solver of MSC.NASTRAN was used to investigate flutter velocity based on PK-method of Piston theory. Our numerical results indicated that there is a good agreement result between Piston Theory in MSC.NASTRAN and coupled fluid-structure analysis.

  • PDF