DOI QR코드

DOI QR Code

Free vibration analysis of concrete arch dams by quadratic ideal-coupled method

  • Received : 2017.04.05
  • Accepted : 2017.10.23
  • Published : 2018.01.10

Abstract

This paper is devoted to two new techniques for free vibration analysis of concrete arch dam-reservoir systems. The proposed schemes are quadratic ideal-coupled eigen-problems, which can solve the originally non-symmetric eigen-problem of the system. To find the natural frequencies and mode shapes, a new special-purpose eigen-value solution routine is developed. Moreover, the accuracy of the proposed approach is thoroughly assessed, and it is confirmed that the new scheme is very accurate under all practical conditions. It is also concluded that both decoupled and ideal-coupled strategy proposed in the previous works can be considered as special cases of the current more general procedure.

Keywords

References

  1. ADINA (2011), On the use of the subspace iteration method, www.adina.com
  2. Afolabi, D. (1987), "Linearization of the quadratic eigenvalue problem", Comput. Struct., 26(6), 1039-1040. https://doi.org/10.1016/0045-7949(87)90120-9
  3. Aftabi, S.A. and Lotfi, V. (2010), "Dynamic analysis of concrete arch dams by ideal-coupled modal approach", Eng. Struct., 32(5), 1377-1383. https://doi.org/10.1016/j.engstruct.2010.01.016
  4. Aftabi, S.A. and Lotfi, V. (2011), "An effective procedure for seismic analysis of arch dams including dam-reservoir-foundation interaction effects", J. Earthq. Eng., 15(7), 971-988. https://doi.org/10.1080/13632469.2010.551703
  5. Arjmandi, S.A. and Lotfi, V. (2011), "Computing mode shapes of fluid-structure systems using subspace iteration methods", Sci. Iran, 18(6), 1159-1169. https://doi.org/10.1016/j.scient.2011.09.011
  6. Bathe, K.J. (1996), Finite Element Procedure, Prentice-Hall, INC., Upper Saddle River, New Jersy, USA.
  7. Bathe, K.J. and Hahn, W.F. (1979), "On transient analysis of fluid-structure systems", Comput. Struct., 10, 383-391. https://doi.org/10.1016/0045-7949(79)90109-3
  8. Bouaanani, N. and Lu, F.Y. (2009), "Assessment of potential-based fluid finite elements for seismic analysis of dam-reservoir systems", Comput. Struct., 87, 206-224.
  9. Chopra, A.K. (2012), "Earthquake analysis of arch dams: factors to be considered", J. Struct. Eng., ASCE, 138, 205-214. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000431
  10. Duron, Z.H. and Hall, J.F. (1988), "Experimental and finite element studies of the forced vibration response of Morrow Point dam", Earthq. Eng. Struct. D., 16, 1021-1039. https://doi.org/10.1002/eqe.4290160706
  11. Everstine, G.C. (1981), "A symmetric potential formulation for fluid structure interaction", J. Sound Vib., 79(1), 157-160. https://doi.org/10.1016/0022-460X(81)90335-7
  12. Felippa, C.A. (1985), "Symmetrization of the contained compressible-fluid vibration eigenproblem", Commun. Appl. Numer. M., 1, 241-247. https://doi.org/10.1002/cnm.1630010509
  13. Felippa, C.A. (1988), "Symmetrization of coupled eigenproblems by eigenvector augmentation", Commun. Appl. Numer. M., 4, 561-563. https://doi.org/10.1002/cnm.1630040414
  14. Geradin, M., Robert, G. and Huck, A. (1984), "Eigenvalue analysis and transient response of fluid-structure interaction problems", Eng. Comput., 1, 151-160. https://doi.org/10.1108/eb023569
  15. Ghaemian, M. and Ghobarah, A. (1998), "Staggered solution schemes for dam reservoir interaction", J. Fluid Struct., 12, 933-948. https://doi.org/10.1006/jfls.1998.0170
  16. Hall, J.F. and Chopra, A.K. (1983), "Dynamic analysis of arch dams including hydrodynamic effects", J. Eng. Mech. Div., ASCE, 109(1), 149-163. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:1(149)
  17. Higham, N.J. and Kim, H.M. (2001), "Solving a quadratic matrix equation by Newton's method with exact line searches", SIAM J. Matrix Anal. A., 23(2), 303-316. https://doi.org/10.1137/S0895479899350976
  18. Hojati, M. and Lotfi, V. (2011), "Dynamic analysis of concrete gravity dams utilizing two-dimensional modified efficient fluid hyper-element", Adv. Struct. Eng., 14(6), 1093-1106. https://doi.org/10.1260/1369-4332.14.6.1093
  19. Kayser-Herold, O. and Matthies, H.G. (2005), "Least squares finite element methods for fluid-structure interaction problems", Comput. Struct., 83, 191-207. https://doi.org/10.1016/j.compstruc.2004.08.002
  20. Kostic, A. and Sikalo, S. (2015), "Definite quadratic eigenvalue problems", Procedia Eng., 100, 56-63. https://doi.org/10.1016/j.proeng.2015.01.342
  21. Long, J.H., Hu, X.Y. and Zhang, L. (2008), "Improved Newton's method with exact line searches to solve quadratic matrix equation", J. Comput. Appl. Math., 222, 645-654. https://doi.org/10.1016/j.cam.2007.12.018
  22. Lotfi, V. (2005), "Frequency domain analysis of concrete arch dams by decoupled modal approach", Struct. Eng. Mech., 21(4), 423-435. https://doi.org/10.12989/sem.2005.21.4.423
  23. Lotfi, V. (2006), "An efficient three-dimensional fluid hyper-element for dynamic analysis of concrete arch dams", Struct. Eng. Mech., 24(6), 683-698. https://doi.org/10.12989/sem.2006.24.6.683
  24. Lotfi, V. (2007), "Direct frequency domain analysis of concrete arch dams based on FE-BE procedure", Struct. Eng. Mech., 26(4), 363-376. https://doi.org/10.12989/sem.2007.26.4.363
  25. Mackey, D.S., Mackey, N., Mehl, C. and Mehrmann, V. (2006), "Vector space of linearizations for matrix polynomials", SIAM J. Matrix Anal. A., 28(4), 971-1004. https://doi.org/10.1137/050628350
  26. Mirzabozorg, H., Varmazyari, M. and Ghaemian, M. (2010), "Dam-reservoir-massed foundation system and travelling wave along reservoir bottom", Soil Dyn. Earthq. Eng., 30, 746-756. https://doi.org/10.1016/j.soildyn.2010.03.005
  27. Morand, H. and Ohayon, R. (1979), "Substructure variational analysis of the vibrations of coupled fluid-structure systems. Finite element results", Int. J. Numer. Meth. Eng., 14, 741-755. https://doi.org/10.1002/nme.1620140508
  28. Noble, C.R. (2002), "Seismic analysis of morrow point dam", Workshop on Non-Linear Structural Analysis of Concrete Dams and Concrete Appurtenances to Dams, Denver, Colorado, USA.
  29. Olson, L.G. and Bathe, K.J. (1985), "Analysis of fluid structure interactions. A direct symmetric coupled formulation based on the fluid velocity potential", Comput. Struct., 21, 21-32. https://doi.org/10.1016/0045-7949(85)90226-3
  30. Olson, L.G. and Vandini, T. (1989), "Eigenproblems from finite element analysis of fluid-structure interactions", Comput. Struct., 33(3), 679-687. https://doi.org/10.1016/0045-7949(89)90242-3
  31. Rezaiee-Pajand, M., Aftabi, S.A. and Kazemiyan, M.S. (2016), "Analytical solution for free vibration of flexible 2D rectangular tanks", Ocean Eng., 122, 118-135. https://doi.org/10.1016/j.oceaneng.2016.05.052
  32. Rezaiee-Pajand, M. and Kazemiyan, M.S. (2014), "Damage identification of 2D and 3D trusses by using complete and incomplete noisy measurements", Struct. Eng. Mech., 52(1), 149-172. https://doi.org/10.12989/sem.2014.52.1.149
  33. Rezaiee-Pajand, M., Kazemiyan, M.S. and Aftabi, S.A. (2014), "Static damage identification of 3D and 2D frames", Mech. Bas. Des. Struct., 42, 70-96. https://doi.org/10.1080/15397734.2013.830534
  34. Samii, A. and Lotfi, V. (2007), "Comparison of coupled and decoupled modal approaches in seismic analysis of concrete gravity dams in time domain", Finite Elem. Anal. Des., 43, 1003-1012. https://doi.org/10.1016/j.finel.2007.06.015
  35. Sandberg, G. (1995), "A new strategy for solving fluid-structure problems", Int. J. Numer. Meth. Eng., 38, 357-370. https://doi.org/10.1002/nme.1620380302
  36. Sheibany, F. and Ghaemian, M. (2006), "Effects of environmental action on thermal stress analysis of karaj concrete arch dam", J. Eng. Mech., ASCE, 132(5), 532-544. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:5(532)
  37. Tisseur, F. and Meerbergen, K. (2001), "The quadratic eigenvalue problem", SIAM Rev., 43(2), 235-286. https://doi.org/10.1137/S0036144500381988
  38. Zienkiewicz, O.C. and Bettess, P. (1978), "Fluid-structure dynamic interaction and wave forces. An introduction to numerical treatment", Int. J. Numer. Meth. Eng., 13, 1-16. https://doi.org/10.1002/nme.1620130102