• 제목/요약/키워드: Coupled Pendulum Model

검색결과 9건 처리시간 0.028초

Analysis of body sliding along cable

  • Kozar, Ivica;Malic, Neira Toric
    • Coupled systems mechanics
    • /
    • 제3권3호
    • /
    • pp.291-304
    • /
    • 2014
  • Paper discusess a dynamic engineering problem of a mass attached to a pendulum sliding along a cable. In this problem the pendulum mass and the cable are coupled together in a model described by a system of differential algebraic equations (DAE). In the paper we have presented formulation of the system of differential equations that models the problem and determination of the initial conditions. The developed model is general in a sense of free choice of support location, elastic cable properties, pendulum length and inclusion of braking forces. Examples illustrate and validate the model.

단일 구동부를 갖는 2축 도립 진자를 위한 제어기 구현 (An implementation of a controller for a double inverted pendulum with a single actuator)

  • 남노현;이건영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.257-260
    • /
    • 1997
  • In this paper, the double inverted pendulum having a single actuator is built and the controller for the system is proposed. The lower link is hinged on the plate to free for rotation in the x-z plane. The upper link is connected to the lower link through a DC motor. The double inverted pendulum built can be kept upright posture by controlling the position of the upper link even though the proposed inverted pendulum has no actuator in lower hinge. The algorithm to control the inverted pendulum is consisted of a state feedback controller within a linearizable range and a fuzzy logic controller coupled with a feedback linearization control for the rest of the range. Concept of the virtual work is employed to drive the linearlized model for the state feedback controller. The feedback linearization controller drives a DC motor with the modified reference joint angle from the fuzzy controller which adjusts a upright posture of a proposed pendulum system. Finally, the experiments are conducted to show the validity of the proposed controller.

  • PDF

Near-resonant attitude motion analysis of a spinning satellite via multiple scales method

  • Kang, Ja-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.213-217
    • /
    • 1994
  • The attitude stability of a satellite in spin-stabilized injection mode which contains a liquid pool is investigated. The satellite model for investigation is a two-body system consisting of a the main body, which is symmetric and rigid, representing the spacecraft, and a spherical pendulum, representing the liquid pool. Assuming that both spacecraft and pendulum are in states of steady spin about the symmetry axis of the spacecraft, the coupled nonlinear equations of motion for the system are simplified. In this paper, by using the multiple scales method, the possible resonance conditions in terms of the system parameters are determined and the corresponding near-resonant solutions are derived.

  • PDF

계수자극을 받는 유동체를 포함한 위성체의 자세 안정도 해석 (ATTITUDE STABILITY OF A SPACECRAFT WITH SLOSH MASS SUBJECT TO PARAMETRIC EXCITATION)

  • 강자영
    • Journal of Astronomy and Space Sciences
    • /
    • 제20권3호
    • /
    • pp.205-216
    • /
    • 2003
  • 회전안정화 로켓 모터를 이용하는 upper stage 위성체의 자세 불안정 현상을 연구하였다. 이 위성체는 대칭형의 본체와 내장된 유동질량으로 구성되며, 유동질량은 구진자로 모델링되었다. 종래의 선형모델이 갖는 단점을 보완하기 위해 정확한 시변 비선형 방정식을 사용하고, 본체 및 구진자 모두 회전 대칭축에 대해 정상상태에 있다고 가정하였다. 본 논문에서는 진자에 대한 준정상해(quasi-stationary solution) 및 공진조건을 파라미터의 함수로 결정하였다. 공진조건의 분석결과 유동질량은 계수자극 및 외부자극을 동시에 받으며, 자극을 받은 유동질량으로부터 에너지가 본체에 유입되면서 위성체는 불안정한 장동운동을 일으키는 것으로 확인되었다. 본 논문에서는 수치시뮬레이션 예시를 통하여 주어진 위성체 모델에 대해 발생가능한 공진조건에서 진자의 운동, 위성체 각 운동량 및 섭동모멘트의 관계 규명과 로켓모터 추진 후에 자세운동이 어떻게 변화하는가를 설명하였다.

Monitoring and vibration control of a fluid catalytic cracking unit

  • Battista, Ronaldo C.;Varela, Wendell D.;Gonzaga, Igor Braz N.
    • Smart Structures and Systems
    • /
    • 제29권4호
    • /
    • pp.577-588
    • /
    • 2022
  • Oil refineries' Fluid Catalytic Cracking Units (FCCU) when in full operation may exhibit strong fluid dynamics caused by turbulent flow in the piping system that may induce vibrations in other mechanical and structural components of the Unity. This paper reports on the experimental-theoretical-computational program performed to get the vibration properties and the dynamic response amplitudes to find out alternative solutions to attenuate the excessive vibrations that were causing fatigue fractures in components of the bottle like reactor-regenerator of an FCC unit in operation in an existing oil refinery in Brazil. Solutions to the vibration problem were sought with the aid of a 3D finite element model calibrated with the results obtained from experimental measurements. A short description of the found solutions is given and their effectiveness are shown by means of numerical results. The solutions were guided by the concepts of structural stiffening and dynamic control performed by a nonlinear pendulum controller whose mechanical design was based on parameters determined by means of a parametric study carried out with 2D and 3D mathematical models of the coupled pendulum-structure system. The effectiveness of the proposed solutions is evaluated in terms of the fatigue life of critical welded connections.

개방형 반복구조물의 진동국부화 (Vibration Localization of Open Loop Repeated Structures)

  • 하동진;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제13권12호
    • /
    • pp.911-917
    • /
    • 2003
  • Vibration localization characteristics of open loop repeated mistuned structures are investigated. The mistuning often creates significant response discrepancies among subcomponents of the repeated structures. As a result of the discrepancies, critical fatigue problems often occur in repeated structures. Therefore. it is of great importance to predict the vibration response of the mistuned repeated structures accurately in this Paper, a simplified model for an open-loop repeated structure is introduced and dimensionless parameters that influence the localization characteristics are identified. The effects of the parameters on the localization characteristics are investigated through numerical study.

Performance of a 3D pendulum tuned mass damper in offshore wind turbines under multiple hazards and system variations

  • Sun, Chao;Jahangiri, Vahid;Sun, Hui
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.53-65
    • /
    • 2019
  • Misaligned wind-wave and seismic loading render offshore wind turbines suffering from excessive bi-directional vibration. However, most of existing research in this field focused on unidirectional vibration mitigation, which is insufficient for research and real application. Based on the authors' previous work (Sun and Jahangiri 2018), the present study uses a three dimensional pendulum tuned mass damper (3d-PTMD) to mitigate the nacelle structural response in the fore-aft and side-side directions under wind, wave and near-fault ground motions. An analytical model of the offshore wind turbine coupled with the 3d-PTMD is established wherein the interaction between the blades and the tower is modelled. Aerodynamic loading is computed using the Blade Element Momentum (BEM) method where the Prandtl's tip loss factor and the Glauert correction are considered. Wave loading is computed using Morison equation in collaboration with the strip theory. Performance of the 3d-PTMD is examined on a National Renewable Energy Lab (NREL) monopile 5 MW baseline wind turbine under misaligned wind-wave and near-fault ground motions. The robustness of the mitigation performance of the 3d-PTMD under system variations is studied. Dual linear TMDs are used for comparison. Research results show that the 3d-PTMD responds more rapidly and provides better mitigation of the bi-directional response caused by misaligned wind, wave and near-fault ground motions. Under system variations, the 3d-PTMD is found to be more robust than the dual linear TMDs to overcome the detuning effect. Moreover, the 3d-PTMD with a mass ratio of 2% can mitigate the short-term fatigue damage of the offshore wind turbine tower by up to 90%.

The effect of impact with adjacent structure on seismic behavior of base-isolated buildings with DCFP bearings

  • Bagheri, Morteza;Khoshnoudiana, Faramarz
    • Structural Engineering and Mechanics
    • /
    • 제51권2호
    • /
    • pp.277-297
    • /
    • 2014
  • Since the isolation bearings undergo large displacements in base-isolated structures, impact with adjacent structures is inevitable. Therefore, in this investigation, the effect of impact on seismic response of isolated structures mounted on double concave friction pendulum (DCFP) bearings subjected to near field ground motions is considered. A non-linear viscoelastic model of collision is used to simulate structural pounding more accurately. 2-, 4- and 8-story base-isolated buildings adjacent to fixed-base structures are modeled and the coupled differential equations of motion related to these isolated systems are solved in the MATLAB environment using the SIMULINK toolbox. The variation of seismic responses such as base shear, displacement in the isolation system and superstructure (top floor) is computed to study the impact condition. Also, the effects of variation of system parameters: isolation period, superstructure period, size of seismic gap between two structures, radius of curvature of the sliding surface and friction coefficient of isolator are contemplated in this study. It is concluded that the normalized base shear, bearing and top floor displacement increase due to impact with adjacent structure. When the distance between two structures decreases, the base shear and displacement increase comparing to no impact condition. Besides, the increase in friction coefficient difference also causes the normalized base shear and displacement in isolation system and superstructure increase in comparison with bi-linear hysteretic behavior of base isolation system. Totally, the comparison of results indicates that the changes in values of friction coefficient have more significant effects on 2-story building than 4- and 8-story buildings.

Along and across-wind vibration control of shear wall-frame buildings with flexible base by using passive dynamic absorbers

  • Ivan F. Huergo;Hugo Hernandez-Barrios;Roberto Gomez-Martinez
    • Wind and Structures
    • /
    • 제38권1호
    • /
    • pp.15-42
    • /
    • 2024
  • A flexible-base coupled-two-beam (CTB) discrete model with equivalent tuned mass dampers is used to assess the effect of soil-structure interaction (SSI) and different types of lateral resisting systems on the design of passive dynamic absorbers (PDAs) under the action of along-wind and across-wind loads due to vortex shedding. A total of five different PDAs are considered in this study: (1) tuned mass damper (TMD), (2) circular tuned sloshing damper (C-TSD), (3) rectangular tuned sloshing damper (R-TSD), (4) two-way liquid damper (TWLD) and (5) pendulum tuned mass damper (PTMD). By modifying the non-dimensional lateral stiffness ratio, the CTB model can consider lateral deformations varying from those of a flexural cantilever beam to those of a shear cantilever beam. The Monte Carlo simulation method was used to generate along-wind and across-wind loads correlated along the height of a real shear wall-frame building, which has similar fundamental periods of vibration and different modes of lateral deformation in the xz and yz planes, respectively. Ambient vibration tests were conducted on the building to identify its real lateral behavior and thus choose the most suitable parameters for the CTB model. Both alongwind and across-wind responses of the 144-meter-tall building were computed considering four soil types (hard rock, dense soil, stiff soil and soft soil) and a single PDA on its top, that is, 96 time-history analyses were carried out to assess the effect of SSI and lateral resisting system on the PDAs design. Based on the parametric analyses, the response significantly increases as the soil flexibility increases for both type of lateral wind loads, particularly for flexural-type deformations. The results show a great effectiveness of PDAs in controlling across-wind peak displacements and both along-wind and across-wind RMS accelerations, on the contrary, PDAs were ineffective in controlling along-wind peak displacements on all soil types and different kind of lateral deformation. Generally speaking, the maximum possible value of the PDA mass efficiency index increases as the soil flexibility increases, on the contrary, it decreases as the non-dimensional lateral stiffness ratio of the building increases; therefore, there is a significant increase of the vibration control effectiveness of PDAs for lateral flexural-type deformations on soft soils.