• Title/Summary/Keyword: Coupled Line Coupler

Search Result 65, Processing Time 0.023 seconds

Extraction of Design Parameters for Re-entrant Mode Microstrip Directional Coupler with High Directivity Using FE Calculation (유한요소계산을 이용한 고지향성을 갖는 재-진입모드 마이크로스트립 방향성 결합기의 설계 파라미터 추출)

  • Kim, Hyeong-Seok;Park, Jun-Seok;Ahn, Dal
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.5
    • /
    • pp.238-242
    • /
    • 2001
  • In this paper, we extracted design parameters for re-entrant mode microstrip directional coupler using FE(finite element) calculations. The microstrip directional coupler suffers from a poor directivity due to effect of the inhomogeneous dielectric including both dielectric substrate and air in microstrip transmission lines. Thus, the phase velocity of even mode is not equal to that of odd mode. In order to improve the directivity of microstrip directional coupler, a novel re-entrant mode microstrip directional coupler was employed. In microstrip configuration, the high directivity can be reached by matching the even- and odd-mode effective phase velocities. Through the values of capacitance obtained from 2-dimensional FE calculations, the phase velocities for each mode and the design parameter were extracted for the proposed parallel coupled-line configuration. Based on the extracted design parameter with phase matching condition, we designed and fabricated a 30dB directional coupler at 0.85GHz. Experimental results show good performance with excellent, isolation and directivity.

  • PDF

A design of $90^{\circ}$ hybrid phase shifter using ferroelectric materials (강유전체를 사용한 $90^{\circ}$ 하이브리드 구조의 위상 변위기 설계)

  • Kim, Young-Tae;Ryu, Han-Cheol;Lee, Su-Jae;Kwak, Min-Hwan;Moon, Seung-Eon;Kim, Hyeong-Seok;Park, Jun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1919-1921
    • /
    • 2002
  • In this paper, we were designed the ferroelectric phase shifter using 3-dB, $90^{\circ}$ branch-line hybrid coupler with two ports terminated in symmetric phase-controllable reflective networks. The design of phase shifter is based on reflection theory of terminating circuits. In order to find the optimum conditions of reflect phase, the effect of a change of capacitance and transmission line connected with two coupled ports of a coupler have been investigated. To obtain more accurate design parameters, finite element method is applied. We were showed large phase variation with small capacitance variation in the parallel connection of capacitor and transmission line by using EM-simulation and circuit-simulation.

  • PDF

Design of miniaturized power divider multiple coupled line on RFIC/MMIC for application to vessel wireless communication components (선박 무선통신소자에의 응용을 위한 다중결합 선로를 이용한 RFIC/MMIC용 초소형 전력분배기의 설계)

  • Lee, Dong-Hwan;Yun, Young
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.401-405
    • /
    • 2005
  • This paper proposed a miniaturization passive element employing the multiple microstrip line. As a result of this method, we realized the transmission line miniaturized. The applying structure designed and evaluated a power divider on GaAS MMIC circuit. It draws a plan in a center Frequency as the observation could do good characteristic.

  • PDF

Extraction of Design Parameters for Planar Coupled Lines (유한 요소 해석에 의한 평면형 결합 선로의 설계 파라미터 추출)

  • Lee, Pil-Yong;Park, Jun-Seok;Ahn, Dal;Kim, Hysons-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2213-2215
    • /
    • 2000
  • In this paper we implemented a novel re-entrant mode microstrip directional coupler for realizing the high directivity characteristic using finite element (FE) analysis. In microstrip configuration, the high directivity can be reached by matching the even- and odd-mode effective phase velocities. Through the values of capacitance obtained from 2-dimensional finite element(FE) analysis, the phase velocities for each mode and the design parameter were extracted for the proposed coupled-line configuration. Based on the extracted design parameter with phase matching condition we designed and fabricated 30dB directional coupler at 850MHz. Experimental results show good performance with excellent isolation.

  • PDF

Design and Fabrication of Broadband Phase Shifter Based on Vector Modulator (벡터 모듈레이터형 광대역 위상 변위기의 설계 및 제작)

  • 류정기;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.734-740
    • /
    • 2003
  • In this paper, A Vector Modulator based a wideband analog phase shifter is realized with four P-I-N diode attenuators, an asymmetric coupled line coupler, a symmetric coupled line coupler, and a power combiner. Simple configuration to have advantages in cost, size, power, and the number of passive circuits is presented. The phase variation due to phase and amplitude error of a P-I-N diode attenuator is derived and used to optimize the overall circuit. The phase shifter shows a total phase shift of 360$^{\circ}$, a 8.2$^{\circ}$maximum phase error, and a 16${\pm}$2.5 dB insertion loss over the wide frequency range of 1 GHz to 3 GHz.

A novel transversal filter with improved spurious characteristics (스퓨리어스 특성이 개선된 새로운 구조의 트랜스버살 필터)

  • Jee, Ki-Mann
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.611-621
    • /
    • 2003
  • A spurious-suppressed transversal filter using the multiple-coupled line is proposed. The frequency characteristics of the multiple-coupled line are analyzed in detail. In order to compare the performances, the novel spurious-suppressed transversal filter using triple-coupled half-wavelength directional couplers is designed at 5 GHz. The spurious-suppression characteristics of the proposed transversal filter are verified by the full wave analysis and the measurement. The spurious response of the fabricated filter is effectively suppressed up to 13 GHz and the large attenuation is attained in the stopband.

  • PDF

Analysis of Phase Velocity Matching in Coupled Microstrip Lines with Dielectric Overlay

  • Lee, Yong K.;Seung Y. Rhee;Kim, Nam;Park, Han K.
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.96-100
    • /
    • 1996
  • This paper describes a concrete method for computing characteristic impedances and effective dielectric constants of the microstrip coupled lines without and with a dielectric overlay. The frequency-independent spectral domain method is used for the analysis of these lines. This method is a powerful, accurate, and numerically efficient approach for planar transmission line structure. For designing the optimal directional coupler, the velocities of even and odd mode must be equal but velocities of these two modes are different in the conventional coupled line which is inhomogeneous. The results show that these two velocities can be almost same according to variations of structural and material parameters in terms of the overlay(superstrate).

  • PDF

Broadband W-band Tandem coupler using MIMIC technology (MIMIC 기술을 이용한 광대역 W-band Tandem 커플러)

  • Lee, Mun-Kyo;An, Dan;Lee, Bok-Hyung;Lim, Byeong-Ok;Lee, Sang-Jin;Moon, Sung-Woon;Jun, Byoung-Chul;Kim, Yong-Hoh;Yoon, Jin-Seob;Kim, Sam-Dong;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.105-111
    • /
    • 2007
  • In this paper, we designed and fabricated a 3-dB tandem coupler using air-bridge technology for millimeter-wane monolithic integrated circuits, operating at W-band($75{\sim}110\;GHz$) frequency. Tightly edge-coupled CPW line has low directivity due to different even-mode and odd-mode phase velocity. To overcome this disadvantage, a 3-dB tandem coupler which comprises the two-sectional weakly parallel-coupled lines with equal phase velocity was designed at W-band. The proposed coupler was fabricated using air-bridge technology to monolithically materialize the uniplanar coupler structure instead of conventional multilayer or wire bonded structure. From the measurements, the coupling coefficient of $2.9{\sim}3.6\;dB$ and the good phase difference of $91.2{\pm}2.9^{\circ}$ were obtained in broad frequency range of $75{\sim}100\;GHz$.

The optical coupling characteristics of $K^{+}$ and $Ag^{+}$ ion-exchanged waveguide ($K^{+}$$Ag^{+}$ 이온교환 도파로의 광결합 특성)

  • 김홍석;이병석;천석표;이현용;정흥배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.284-287
    • /
    • 1996
  • In this paper, we investigated the optical coupling characteristics for $K^{+}$ ion-exchanged diffused channel waveguide by using coupled-mode equations. In this case, the optical-power-dividing was observed at the waveguide-type optical coupler with 3[$\mu\textrm{m}$] line-width and, 6[$\mu\textrm{m}$] separation between channel waveguides in which interaction lengths were 1 and 3[mm], respectively, On the basis of that we deformed simulation for $Ag^{+}$ ion-exchanged diffused channel waveguide. As a result of simulation, the optical-power-dividing was shown at the waveguide-type optical coupler wish 3[$\mu\textrm{m}$] line-width, 6[$\mu\textrm{m}$] separation between channel waveguides and 0.11[mm] interaction length.

  • PDF

Compact Branch-line Power Divider Using Connected Coupled-line Structure

  • Yun, Tae-Soon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.109-114
    • /
    • 2018
  • In order to improve performance for the size of the BLPD, the CCL is used for the realization as the delay line. As realizing lower coupling coefficient and lower characteristic impedance, the CCL has good performance of the phase delay. The CCL is applied as the compact BLPD with optimized coupling factor and matched impedance because the lower coupling coefficient and lower characteristic impedance are increased the size and the loss, respectively. Designed BLPD using the CCL has the size of $0.13{\lambda}_g{\times}0.13{\lambda}_g$ and the size-reduction ratio of fabricated BLPD using the CCL has 58.5% ($21.08{\times}21.40mm^2$). Also, fabricated BLPD is measured the insertion loss of 3.16dB at the center frequency of 1.78GHz and the 20dB bandwidth is 9.58%. Differenced magnitude and phase between threw port and coupled port are measured 0.1dB and $89.9^{\circ}$, respectively. These performances are almost same compared with the conventional BLPD. Suggested application of the CCL can be used various devices and circuits for the size-reduction.