• 제목/요약/키워드: Coupled Calculation

검색결과 350건 처리시간 0.022초

미세조직 변화를 고려한 대형 배기밸브 스핀들 제조공정 해석 (A Manufacturing Process analysis of Large Exhaust Valve Spindle considering Microstructure Evolution)

  • 정호승;조종래;박희천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권8호
    • /
    • pp.938-945
    • /
    • 2005
  • The microstructure evolution in hot forging process is composed of dynamic recrystallization during deformation as well as grain growth during dwell time. Therefore, the control of forging parameters such as strain, strain rate. temperature and holding time is important because the microstructure change in hot working affects the mechanical properties. Modeling equations are developed to represent the flow curve. grain size. recrystallized volume fraction and grain growth phenomena by various tests. The developed modeling equations were combined with thermo-viscoplastic finite element modeling to predict the microstructure change evolution during hot forging process. The large exhaust valve spindle (head diameter of 512mm) was simulated by closed die forging with hydraulic press and cooled in air after forging. The preform was heated to each 1080 and 1150$^{\circ}C$. Numerical calculation was performed by DEFORM-2D. a commercial finite element code. Heat transfer can be coupled with the deformation analysis in a non-isothermal deformation analysis. In order to obtain the fine and homogeneous microstructure and good mechanical properties in forging. the FEM would become a useful tool in the simulation of the microstructure development. In forging, appropriate temperature, strain and strain rate and rapid cooling are required to obtain the fine grain microstructure The optimal forging temperature and effective strain range of Nimonic 80A for large exhaust valve spindle are about 1080$\∼$l120$^{\circ}C$ and 150$\∼$200$\%$.

토사터널의 일차 라이닝에 작용하는 하중 예측 사례 연구 (Prediction of primary lining loads for soft ground tunnels based on case studies)

  • 김학준
    • 한국터널지하공간학회 논문집
    • /
    • 제6권1호
    • /
    • pp.17-23
    • /
    • 2004
  • 터널 하중을 예측하는 것은 터널 설계에서 가장 중요한 문제 중의 하나이다. 개나다 에드몬턴시의 여러 터널로 부터 측정된 계측자료와 기존에 존재하는 설계방법을 이용하여 계산된 터널 하중의 비교를 통하여 기존 설계방법들의 정확도를 검토하였다. 그러나 기존의 방법들은 터널 하중을 예측하는데 만족하지 못한 결과를 보여 주었다. 일자 라이닝의 설치 이전에 발생하는 응력감소 인자를 구한 후, 기존의 설계방법을 결합하여 터널 하중을 예측할 것을 제안하였다. 에드몬턴시에 건설된 터널에 대한 무차원 하중 인자인 nD/H값이 도표로 제시되었다. 제안된 방법의 타당성을 검증하기 위하여, 제안된 방법으로 계산된 터널 하중과 계측 값을 비교하였다. 다른 지역 터널의 경우, 비교적 견고 (stiff) 하거나 조밀 (dense)한 흙으로 구성된 지반에 터널이 건설될 경우에는 제안된 방법을 사용할 수 있다.

  • PDF

Study of fission gas products effect on thermal hydraulics of the WWER1000 with enhanced subchannel method

  • Bahonar, Majid;Aghaie, Mahdi
    • Advances in Energy Research
    • /
    • 제5권2호
    • /
    • pp.91-105
    • /
    • 2017
  • Thermal hydraulic (TH) analysis of nuclear power reactors is utmost important. In this way, the numerical codes that preparing TH data in reactor core are essential. In this paper, a subchannel analysis of a Russian pressurized water reactor (WWER1000) core with enhanced numerical code is carried out. For this, in fluid domain, the mass, axial and lateral momentum and energy conservation equations for desired control volume are solved, numerically. In the solid domain, the cylindrical heat transfer equation for calculation of radial temperature profile in fuel, gap and clad with finite difference and finite element solvers are considered. The dependence of material properties to fuel burnup with Calza-Bini fuel-gap model is implemented. This model is coupled with Isotope Generation and Depletion Code (ORIGEN2.1). The possibility of central hole consideration in fuel pellet is another advantage of this work. In addition, subchannel to subchannel and subchannel to rod connection data in hexagonal fuel assembly geometry could be prepared, automatically. For a demonstration of code capability, the steady state TH analysis of a the WWER1000 core is compromised with Thermal-hydraulic analysis code (COBRA-EN). By thermal hydraulic parameters averaging Fuel Assembly-to-Fuel Assembly method, the one sixth (symmetry) of the Boushehr Nuclear Power Plant (BNPP) core with regular subchannels are modeled. Comparison between the results of the work and COBRA-EN demonstrates some advantages of the presented code. Using the code the thermal modeling of the fuel rods with considering the fission gas generation would be possible. In addition, this code is compatible with neutronic codes for coupling. This method is faster and more accurate for symmetrical simulation of the core with acceptable results.

A comparative evaluation of $CO_2$ and erbium-doped yttrium aluminium garnet laser therapy in the management of dentin hypersensitivity and assessment of mineral content

  • Belal, Mahmoud Helmy;Yassin, Abdulaziz
    • Journal of Periodontal and Implant Science
    • /
    • 제44권5호
    • /
    • pp.227-234
    • /
    • 2014
  • Purpose: Dentin hypersensitivity is a potential threat to oral health. Laser irradiation may provide reliable and reproducible treatment but remains controversial. The present study aimed to evaluate the effects of $CO_2$ or erbium-doped yttrium aluminium garnet (Er:YAG) laser therapy, and to assess mineral content. Methods: Eighteen human single-rooted teeth affected with advanced periodontitis were obtained. Buccal and lingual surfaces were planed to form 36 specimens. Ethylenediaminetetraacetic acid gel (24%) was applied to remove the smear layer and simulate hypersensitive teeth. The experimental groups were: group 1, control (no irradiation); group 2, $CO_2$ laser (repetitive pulsed mode, 2 W, $2.7J/cm^2$); and group 3, Er:YAG laser (slight contact mode, 40 mJ/pulse and 10 Hz). To evaluate dentinal tubule occlusion, six specimens per group (2-mm thickness) were prepared and observed using scanning electron microscopy (SEM) for calculation of the occlusion percentage. To evaluate the mineral content, six specimens per group (0.6-mm thickness) were used, and then the levels of Ca, K, Mg, Na, and P were measured by inductively coupled plasma-atomic emission spectrometry. In addition, the surface temperature of the specimens during laser irradiation was analyzed by a thermograph. Results: The SEM photomicrographs indicated melted areas around exposed dentinal tubules and a significantly greater percentage of tubular occlusion in the $CO_2$ and Er:YAG laser groups than the control, and in the Er:YAG group than the $CO_2$ laser group. In addition, no significant differences were noted among the experimental groups for the mineral elements analyzed. The $CO_2$ laser group showed an evident thermal effect compared to the Er:YAG group. Conclusions: $CO_2$ and Er:YAG laser are effective in treating dentin hypersensitivity and reducing its symptoms. However, the Er:YAG laser has a more significant effect; thus, it may constitute a useful conditioning item. Furthermore, neither $CO_2$ nor Er:YAG lasers affected the compositional structure of the mineral content.

Study on post-flutter state of streamlined steel box girder based on 2 DOF coupling flutter theory

  • Guo, Junfeng;Zheng, Shixiong;Zhu, Jinbo;Tang, Yu;Hong, Chengjing
    • Wind and Structures
    • /
    • 제25권4호
    • /
    • pp.343-360
    • /
    • 2017
  • The post-flutter state of streamlined steel box girder is studied in this paper. Firstly, the nonlinear aerodynamic self-excited forces of the bridge deck cross section were investigated by CFD dynamic mesh technique and then the nonlinear flutter derivatives were identified on this basis. Secondly, based on the 2-degree-of-freedom (DOF) coupling flutter theory, the torsional amplitude and the nonlinear flutter derivatives were introduced into the traditional direct flutter calculation method, and the original program was improved to the "post-flutter state analysis program" so that it can predict not only the critical flutter velocity but also the movement of the girder in the post-flutter state. Finally, wind tunnel tests were set to verify the method proposed in this paper. The results show that the effect of vertical amplitude on the nonlinear flutter derivatives is negligible, but the torsional amplitude is not; with the increase of wind speed, the post-flutter state of streamlined steel box girder includes four stages, namely, "little amplitude zone", "step amplitude zone", "linearly growing amplitude zone" and "divergence zone"; damping ratio has limited effect on the critical flutter velocity and the steady state response in the post-flutter state; after flutter occurs, the vibration form is a single frequency vibration coupled with torsional and vertical DOF.

모터링 엔진의 시동 사이클 및 시동 정지 사이클에서 저어널베어링의 마모 연구 - II. 해석 결과 (Study on Wear of Journal Bearings during Start-up and Coast-down Cycles of a Motoring Engine - II. Analysis Results)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제31권3호
    • /
    • pp.125-140
    • /
    • 2015
  • In this paper, we present the results of the wear analysis of journal bearings on a stripped-down single-cylinder engine during start-up and coast-down by motoring. We calculate journal bearing wear by using a modified specific wear rate considering the fractional film defect coefficient and load-sharing ratio for the asperity portion of a mixed elastohydrodynamic lubrication (EHL) regime coupled with previously presented graphical data of experimental lifetime linear wear in radial journal bearings. Based on the calculated wear depth, we obtain a new oil film thickness for every crank angle. By examination of the oil film thickness, we determine whether the oil film thickness at the wear scar region is in a mixed lubrication regime by comparing dimensionless oil film thickness, h/σ, to 3.0 at every crank angle. We present the lift-off speed and the crank angles involved with the wear calculation for bearings #1 and #2. The dimensionless oil film thickness, h/σ, illustrates whether the lubrication region between the two surfaces is still within the bounds of the mixed lubrication regime after scarring of the surface by wear. In addition, we present in tables the asperity contact pressure, the real minimum film thickness at the wear scar region, the modified specific wear rate, and the wear angle, α, for bearings #1 & #2. To show the real shape of the oil film at wear scar region, we depict the actual oil film thickness in graphs. We also tabulated the ranges of bearing angles related with wear scar. We present the wear volume for bearings #1 and #2 after one turn-on and turn-off of the engine ignition switch for five kinds of equivalent surface roughness. We show that the accumulated wear volume after a single turn-on and turn-off of an ignition switch normally increases with increasing surface roughness, with a few exceptions.

모터링 엔진의 시동 사이클 및 시동 정지 사이클에서 저어널베어링의 마모 연구 − I. 이론 및 해석 절차 (Study on Wear of Journal Bearings during Start-up and Coast-down Cycles of a Motoring Engine - I. Theory and Analysis Procedure)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제31권3호
    • /
    • pp.109-124
    • /
    • 2015
  • This paper presents a wear analysis procedure for the journal bearings on a stripped-down single-cylinder engine during start-up and coast-down by motoring. A journal bearing is in the mixed elastohydrodynamic (EHL) lubrication region when the shaft speed is less than the corresponding lift-off speed. Below the lift-off speed, a wear scar can form on bearing surfaces. In part 1 of this paper, we develop the appropriate formulations and the calculation procedure for the analysis. Specifically, we formulate an equation for modified film thickness in a journal bearing considering the additional wear volume. In order to obtain the modified specific wear rate induced by the modified Archard’s wear coefficient, we utilized the extended non-dimensional diagram for the specific wear rate, k, the fractional film defect coefficient, Ψ and the asperity load sharing factor, γ2. This asperity load sharing factor is newly calculated by setting the Zhao-Maietta-Chang (ZMC) asperity contact pressure equation coupled with the central film thickness equation derived by using the ZMC asperity contact model equal to the modified central contact pressure derived by using the central (or maximum) contact pressure at the dry rough line-contact configuration. We can use the procedure introduced in this paper to determine the lifetime (or longterm) linear wear in radial journal bearings that is a result of repeated stop-start cycles.

GIS 자료와 연계한 시나리오별 홍수피해액 분석 (Flood Damage Assessment According to the Scenarios Coupled with GIS Data)

  • 이근상;박진혁
    • 대한공간정보학회지
    • /
    • 제19권4호
    • /
    • pp.71-80
    • /
    • 2011
  • 우리나라는 홍수피해를 평가하기 위한 방법으로 간편법과 개선법을 사용하다가 현재는 2004년도에 개발된 다차원 홍수피해액 산정기법을 활용하고 있다. 본 연구에서는 GIS 자료를 기초로 다차원 홍수피해액 산정기법을 이용한 댐 하류지역의 홍수피해액 평가기법을 제시하였다. 먼저 배수강제알고리듬에 기초한 횡단측선 레이어에 FLDWAV 모델을 이용한 홍수위 자료를 입력한 후 DEM 자료와의 공간연산 처리를 통해 침수심 격자를 생성하였다. 그리고, 수치지형도에서 추출한 건물 레이어와 토지피복도에서 추출한 농경지 자료를 이용하여 지자체별 건물과 농경지 자산가치를 평가하였다. 또한 건축형태별 건축단가, 도시유형별 가정용품 평가액, 농작물 단가정보, 사업체의 유형 및 재고자산 평가액 자료를 건물, 농경지, 침수심 레이어와 연계하여 항목별로 피해액을 산정하였다. 홍수피해액 분석을 통해, 200년 빈도의 홍수피해액이 100년, 50년, 10년 빈도에 비해 각각 1.19배, 1.30배 그리고 1.96배 높게 나타났다.

파장별 회체가스중합모델을 이용한 대향류 화염에서의 복사 흡수 예측에 관한 연구 (A Study on the Prediction of Self-absorption in Opposed Flames Using WSGGM-Based Spectral Model)

  • 김욱중
    • 대한기계학회논문집B
    • /
    • 제25권4호
    • /
    • pp.600-609
    • /
    • 2001
  • WSGGM based low-resolution spectral model for calculating radiation transfer in combustion gases is applied to estimate self-absorption of radiation energy in one-dimensional opposed flow flames. Development of such a model is necessary in order to enable detailed chemistry-radiation interaction calculations including self-absorption. Database of band model parameters which can be applied to various one-dimensional opposed flow diffusion and partially premixed flames is created. For the validation of the model and database, low resolution spectral intensities at fuel exit side are calculated and compared with the results of a narrow band model with those based on the Curtis-Godson approximation. Good agreements have been found between them. The resulting radiation model is coupled to the OPPDIF code to calculate the self-absorption of radiant energy and compared with the results of an optically thin calculation and the results of a discrete ordinates method in conjunction with the statistical narrow band model. Significant self-absorption of radiation is found for the flames considered here particularly for the fuel side of the reacting zone. However, the self-absorption does not have significant effects on the flame structure in this case. Even in the case of the low velocity diffusion flame and the partially premixed flame of low equivalence ratio, the effects of self-absorption of radiation on the flame temperature and production of minor species are not significant.

Decrease of Global Warming Effect During Dry Etching of Silicon Nitride Layer Using C3F6O/O2 Chemistries

  • Kim, Il-Jin;Moon, Hock-Key;Lee, Jung-Hun;Jung, Jae-Wook;Cho, Sang-Hyun;Lee, Nae-Eung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.459-459
    • /
    • 2012
  • Recently, the discharge of global warming gases in dry etching process of TFT-LCD display industry is a serious issue because perfluorocarbon compound (PFC) gas causes global warming effects. PFCs including CF4, C2F6, C3F8, CHF3, NF3 and SF6 are widely used as etching and cleaning gases. In particular, the SF6 gas is chemically stable compounds. However, these gases have large global warming potential (GWP100 = 24,900) and lifetime (3,200). In this work, we chose C3F6O gas which has a very low GWP (GWP100 = <100) and lifetime (< 1) as a replacement gas. This study investigated the effects of the gas flow ratio of C3F6O/O2 and process pressure in dual-frequency capacitively coupled plasma (CCP) etcher on global warming effects. Also, we compared global warming effects of C3F6O gas with those of SF6 gas during dry etching of a patterned positive type photo-resist/silicon nitride/glass substrate. The etch rate measurements and emission of by-products were analyzed by scanning electron Microscopy (SEM; HITACI, S-3500H) and Fourier transform infrared spectroscopy (FT-IR; MIDAC, I2000), respectively. Calculation of MMTCE (million metric ton carbon equivalents) based on the emitted by-products were performed during etching by controlling various process parameters. The evaluation procedure and results will be discussed in detail.

  • PDF