• Title/Summary/Keyword: Coupled Bending and Torsional Vibrations

Search Result 13, Processing Time 0.035 seconds

Coupled Bending and Torsional Vibrations Analysis of Cracked L-shaped Beam (크랙을 가진 L형 단면 보의 횡-비틀림 연성진동 해석)

  • Son, In-Soo;Kim, Chang-Ho;Cho, Jeong-Rae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.8-15
    • /
    • 2011
  • In this paper, the influence of a crack on the natural frequency of cracked cantilever L-shaped beam with coupled bending and torsional vibrations by analytically and experimentally is analyzed. The L-shaped beam with a crack is modeled by Hamilton's principle with consideration of bending and torsional energy. The two coupled governing differential equations are reduced to one sixth-order ordinary differential equation in terms of the flexural displacement. The crack is assumed to be in the first, second and third mode of fracture and to be always opened during the vibrations. The theoretical results are validated by a comparison with experimental measurements. The maximal difference between the theoretical results and experimental measurements of the natural frequency is less than 7.5% in the second vibration mode.

Experimental Study on Detection of Crack for Coupled Bending-torsional Vibrations of L-beams (횡-비틀림 연성진동하는 L형 단면 보의 크랙 검출에 대한 실험적 연구)

  • Son, In-Soo;Lee, Doo-Ho;No, Tae-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.169-177
    • /
    • 2011
  • In this paper, the natural frequency of a cracked cantilever L-beams with a coupled bending and torsional vibrations is investigate by theory and experiment. In addition, a method for detection of crack in a cantilever L-beams is presented based on natural frequency measurements. The governing differential equations of a cracked L-beam are derived via Hamilton's principle. The two coupled governing differential equations are reduced to one sixth order ordinary differential equation in terms of the flexural displacement. Futher, the dynamic transfer matrix method is used for calculation of a exact natural frequencies of L-beams. The crack is assumed to be in the first mode of fracture and to be always opened during vibrations. In this study, the differences between the actual and predicted positions and sizes of crack are less than about 10 % and 39.5 % respectively.

An analytical algorithm for assessing dynamic characteristics of a triple-tower double-cable suspension bridge

  • Wen-ming Zhang;Yu-peng Chen;Shi-han Wang;Xiao-fan Lu
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.325-343
    • /
    • 2024
  • Triple-tower double-cable suspension bridges have increased confinement stiffness imposed by the main cable on the middle tower, which has bright application prospects. However, vertical bending and torsional vibrations of the double-cable and the girder are coupled in such bridges due to the hangers. In particular, the bending vibration of the towers in the longitudinal direction and torsional vibrations about the vertical axis influence the vertical bending and torsional vibrations of the stiffening girders, respectively. The conventional analytical algorithm for assessing the dynamic features of the suspension bridge is not directly applicable to this type of bridge. This study attempts to mitigate this problem by introducing an analytical algorithm for solving the triple-tower double-cable suspension bridge's natural frequencies and mode shapes. D'Alembert's principle is employed to construct the differential equations of the vertical bending and torsional vibrations of the stiffening girder continuum in each span. Vibrations of stiffening girders in each span are interrelated via the vibrations of the main cables and the bridge towers. On this basis, the natural frequencies and mode shapes are derived by separating variables. The proposed algorithm is then applied to an engineering example. The natural frequencies and mode shapes of vertical bending and torsional vibrations derived by the analytical algorithm agreed well with calculations via the finite element method. The fundamental frequency of vertical bending and first- and second-order torsion frequencies of double-cable suspension bridges are much higher than those of single-cable suspension bridges. The analytical algorithm has high computational efficiency and calculation accuracy, which can provide a reference for selecting appropriate structural parameters to meet the requirements of dynamics during the preliminary design.

A Study on the Coupled Shaft-Torsional and Blade-Bending Vibrations in the Flexible Rotor-Coupling-Blade System (유연체 로터-커플링-블레이드 시스템의 로터 축과 블레이드의 연성 진동에 관한 연구)

  • Lee, Sun-Sook;Oh, Byung-Young;Yoon, Hyung-Won;Cha, Seog-Ju;Na, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.221-226
    • /
    • 2005
  • In this paper, a dynamic model for the rotor shaft-coupling-blade system is developed. The blades are attached to a disk and driven by an electric motor shaft which is flexible in torsion. We assumed that the shaft torsional flexibility is lumped in the flexible coupling which is usually adopted in rotor systems. The Lagrangian approach with the small deformation theory for both blade-bending and shaft-torsional deformations is employed for developing the equation of the motion. The assumed modes method is used for estimating the blade transverse deflection. The numerical results highlight the effects of both structural damping of the system and the torsional stiffness of the flexible coupling to the dynamic response of the blade. The results showed strong coupling between the blade bending and shaft torsional vibrations in the form of inertial nonlinearif, stiffness hardening and softening.

  • PDF

A Study on the Coupled Shaft-torsional and Blade-bending Vibrations in the Flexible Rotor-coupling-blade System (유연체 로터-커플링-블레이드 시스템의 로터 축과 블레이드의 연성 진동에 관한 연구)

  • Oh, Byung-Young;Lee, Sun-Sook;Yoon, Hyungwon;Cha, Seog-Ju;Na, Sungsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1023-1029
    • /
    • 2005
  • In this paper, a dynamic model for the rotor shaft-coupling-blade system was developed. The blades are attached to a disk and driven by an electric motor shaft which is flexible in torsion. We assumed that the shaft torsional flexibility was lumped in the flexible coupling which is usually adopted in rotor systems. The Lagrangian approach with the small deformation theory for both blade-bending and shaft-torsional deformations was employed for developing the equation of the motion. The Assumed Modes Method was used for estimating the blade transverse deflection. The numerical results highlight the effects of both structural damping of the system and the torsional stiffness of the flexible coupling to the dynamic response of the blade. The results showed strong coupling between the blade bending and shaft torsional vibrations in the form of inertial nonlinearity, stiffness hardening and softening.

Study on Method of Crack Detection of L-beams with Coupled Vibration (연성진동하는 L형 단면 보의 크랙 검출 방법에 대한 연구)

  • Son, In-Soo;Cho, Jeong-Rae;Ahn, Sung-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.78-86
    • /
    • 2010
  • This paper aims to investigate the natural frequency of a cracked cantilever L-beams with a coupled bending and torsional vibrations. In addition, a theoretical method for detection of the crack position and size in a cantilever L-beams is presented based on natural frequencies. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using extended Hamilton's Principle. The dynamic transfer matrix method is used for calculation of a exact natural frequencies of L-beams. In order to detect the crack of L-beams, the effect of spring coefficients for bending moment and torsional force is included. In this study, the differences between the actual data and predicted positions and sizes of crack are less than 0.5% and 6.7% respectively.

Exact Solutions for Bending-Torsion Coupled Vibration of Composite Timoshenko Beam (복합재 티모센코 보의 굽힘 비틀림 연성 진동에 대한 엄밀해)

  • Hong, Seong-Uk;Gang, Byeong-Sik;Park, Jung-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1559-1566
    • /
    • 2001
  • This paper proposes a dynamic analysis method for obtaining exact solutions of composite Timoshenko beams, which are inherently subjected to both the bending , and torsional vibrations. In this paper, the bending-torsion coupled vibration of composite Timoshenko beam is rigorously modelled and analyzed. Two numerical examples are provided to validate and illustrate the bending-torsion coupled vibration of composite Timoshenko beam structure. The numerical examples prove that the proposed method is of great use for the dynamic analysis of dynamic structures composed of multiply connected composite Timoshenko beams.

Coupled Vibration of Lateral and Torsional Vibrations in a Rotating Shaft Driven through a Universal Joint - Derivation of Equations of Motion and Stability Analysis - (유니버셜 조인트에 의해 구동되는 회전축의 횡진동과 비틀림진동의 연성진동 - 운동방정식의 유도 및 안정성해석 -)

  • 김정렬;전승환;이돈출
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.461-465
    • /
    • 1999
  • This paper presents theoretical analyses for unstable vibrations caused by the couple of bending and torsion in a rotating shaft driven through a universal joint. A driving shaft is assumed to be rigid and to rotate with a constant angular velocity. The driven shaft system consists of a flexible shaft with a circular section and a symmetrical rotor attached at a point between the shaft ends. Equations of motion derived hold with an accuracy of the second order of shaft deformations, and are analyzed by the asymptotic method. The vibrations become unstable when the driving shaft rotates with the angular velocity to be approximately equal to half of the sum of the natural frequencies for whirling and torsional vibrations.

  • PDF

Derivation and verification of the exact dynamic element for composite Timoshenko beam (복합재 티모센코 보의 엄밀한 동적 요소 유도 및 검증)

  • Kang, B.S.;Hong, S.W.;Park, J.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.540-545
    • /
    • 2000
  • This paper presents the exact dynamic element for composite Timoshenko beam, which is inherently subject both to bending and torsional vibration. The coupling effect between bending and torsional vibrations is rigorouly considered in the derivation of the exact dynamic element. Two examples are provided to validate and illustrate the proposed exact dynamic element matrix for composite Timoshenko beam.

  • PDF

Dynamic analysis of thin-walled open section beam under moving vehicle by transfer matrix method

  • Xiang, Tianyu;Xu, Tengfei;Yuan, Xinpeng;Zhao, Renda;Tong, Yuqiang
    • Structural Engineering and Mechanics
    • /
    • v.30 no.5
    • /
    • pp.603-617
    • /
    • 2008
  • Three dimensional coupled bending-torsion dynamic vibrations of thin-walled open section beam subjected to moving vehicle are investigated by transfer matrix method. Through adopting the idea of Newmark-${\beta}$ method, the partial differential equations of structural vibration can be transformed to the differential equations. Then, those differential equations are solved by transfer matrix method. An iterative scheme is proposed to deal with the coupled bending-torsion terms in the governing vibration equations. The accuracy of the presented method is verified through two numerical examples. Finally, with different eccentricities of vehicle, the torsional vibration of thin-walled open section beam and vertical and rolling vibration of truck body are investigated. It can be concluded from the numerical results that the torsional vibration of beam and rolling vibration of vehicle increase with the eccentricity of vehicle. Moreover, it can be observed that the torsional vibration of thin-walled open section beam may have a significant nonlinear influence on vertical vibration of truck body.