• Title/Summary/Keyword: Coupled Antenna

Search Result 299, Processing Time 0.024 seconds

Design of wideband microstrip antennas using parasitic element (기생소자를 이용한 광대역 마이크로스트립 안테나의 설계)

  • 김태완;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1294-1303
    • /
    • 1996
  • In this paper, the microstrip anntenna with broad bandwidth is designed using parasitic element. In the designed cofiguration, parasitic element of the same resonating length but different width which is coupled to the nonradiating edge of a rectangular patch antenna. The driven element aloe is fed and the other part is operated as parasitic element. So the different patchs are resonating at differnt frequencies and this multiple resonance increase the bandwidth. The overall size of the antenna is not increased by adding parasitic element to a driven patch. Compared to the available wideband microstrip antennas, the designed antenna structure is bery compact. A theoretical explanation of the rectangular patch antenna coupled with prarsitic is analyzed by extending the theory of coupled microstrip lines. The theoretical and experimental results for a patch coupled with a single parasitic are presented.

  • PDF

Experimental Studies on the Performance of the Active Phased-Array. Antenna Coupled by Transmission Line (전송선로로 결합된 능동 위상차배열 안테나의 동작특성에 관한 실험적 연구)

  • 최영규
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.175-181
    • /
    • 2004
  • In order to increase the coupling efficiency of the Power and Phase of the active Phase way antenna, we have fabricated the active phased-array antenna which is coupled by the transmission line, and investigated the relationship between the length of the coupling transmission line and coupling power and phase. The following three types of driving method -(1) giving the frequency difference between the two active antenna, (2) applying the input signal to the one side of the two antennas, and changing the eigen frequency of the other side antenna, (3) appling the different phase inputs to the active antennas was investigated. The experimental results showed that the interval of the antenna elements has not affected the power and the phase of the antenna.

Design of Small CRPA Arrays with Circular Microstrip Loops for Electromagnetically Coupled Feed

  • Hur, Jun;Byun, Gangil;Choo, Hosung
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.129-135
    • /
    • 2018
  • This paper proposes a design of small controlled reception pattern antenna (CRPA) arrays using circular microstrip loops with frequency-insensitive characteristics. The proposed array consists of seven identical upper and lower circular loops that are electromagnetically coupled, which results in a frequency-insensitive behavior. To demonstrate the feasibility of the proposed feeding mechanism, the proposed array is fabricated, and its antenna characteristics are measured in a full-anechoic chamber. The operating principle of the proposed feeding mechanism is then interpreted using an equivalent circuit model, and the effectiveness of the circular loop shape is demonstrated by calculating near electromagnetic fields in proximity to the radiator. The results confirm that the proposed feeding mechanism is suitable to have frequency-insensitive behavior and induces strong electric and magnetic field strengths for higher radiation gain in extremely small antenna arrays.

Design of GPS Antenna with Electromagnetically Coupled Slot Radiator(ECSR) for Mobile Handset Applications (전자기적 결합된 슬롯 방사체를 이용한 휴대단말기용 GPS 안테나 설계)

  • Jung, Kang-Jae;Lee, Byung-Je
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.7
    • /
    • pp.603-607
    • /
    • 2009
  • In this paper, a GPS antenna is designed by using metal film which can be attached on the case of battery without additional space for antenna in GPS band operation. The proposed metal film has a half-wavelength slot radiator. The slot radiator is fed by th electromagnetic field coupled from the GSM850/PCS band antenna. The proposed GPS antenna obtains about 20 MHz bandwidth(VSWR<3) which can cover entire GPS band. The antenna has an average gain of -3.8 dBi.

A Study on a Capacitively Coupled Microstrip Array Antenna (용량성 결합 마이크로스트립 배열 안테나에 대한 연구)

  • Lee, Jong-Ig;Yeo, Junho;Baek, Woon-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.63-64
    • /
    • 2015
  • In this paper, a microstrip array antenna capacitively coupled to a microstrip line is studied. The array antenna consists of uniformly spaced rectangular microstrip patches arranged close to a feeding microstrip line on a grounded dielectric substrate. The effects of various parameters, such as strip width and length, distance between adjacent patches, gap between strip patches and microstrip feed line, on the antenna performance were examined. By properly adjusting geometrical parameters, the array suitable for a high gain antenna for use in a frequency band centered at 12.5 GHz was designed.

  • PDF

Design of S-Band Phased Array Antenna with High Isolation Using Broadside Coupled Split Ring Resonator

  • Hwang, Sungyoun;Lee, Bomson;Kim, Dong Hwan;Park, Joon Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.108-116
    • /
    • 2018
  • In this paper, a method of designing a Vivaldi type phased array antenna (PAA) which operates at S-band (2.8-3.3 GHz) is presented. The presented antenna uses broadside coupled split ring resonators (BC-SRRs) for high isolation, wide field of view, and good active S-parameter characteristics. As an example, we design a $1{\times}8$ array antenna with various BC-SRR structures using theory and EM simulations. The antenna is fabricated and measured to verify the design. With the BC-SRR implemented between the two radiating elements, the isolation is shown to be enhanced by 6 dB, up to 23 dB. The scan angle is shown to be within ${\pm}53^{\circ}$ based on a -10 dB active reflection coefficient. The operation of the scan angle is possible within ${\pm}60^{\circ}$ with a little larger reflection coefficient (-7 dB to -8 dB). The proposed design with BC-SRRs is expected to be useful for PAA applications.

Short-Ended Coaxial Slot-Coupled Strip Array Antenna (단락종단된 동축 슬롯 결합 스트림 배열 안테나)

  • 김중표;이창원
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.399-403
    • /
    • 2000
  • A new type of collinear antenna called short-ended coaxial slot-coupled strip array antenna is investigated theoretically. The antenna has an advantage of structural simplicity. The integral equations are derived for the proposed structure by use of the Fourier transform and mode expansion, and the simultaneous linear equations are obtained. The slot electric field and strip current are then obtained by solving the simultaneous linear equation. The effects of slot and strip number on the radiation efficienty, beamwidth and directivity gain are also presented.

  • PDF

Miniaturization of Aperture-Coupled RHCP Patch Antenna (개구면 결합 원형분극 패치 안테나의 소형화)

  • Park Byung-Woo;Jeong Bong-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.4
    • /
    • pp.198-205
    • /
    • 2005
  • In this paper, the miniaturization of aperture-coupled RHCP patch antenna for the GPS system is treated. Circularly polarization characteristics is implemented by truncating diagonal corners of the square patch. Antenna size is reduced by inserting four uniform slits at the patch edges, which was equivalently lengthened the surface current by meandering it, This antenna uses aperture-coupled feeding structure with crossed-slot shape in order to give easy miniaturization of RHCP patch antenna. Simulated and measured results show that $42.7\%$ lower antenna size is obtained, and also $56\%$ lower -10dB bandwidth and $38.5\%$ lower 3dB AR bandwidth are obtained. when the proposed design scheme is applied to a commercial GPS antenna structure, $42.9\%$ lower patch size and $56\%$ lower 3dB AR bandwidth compared to commercial antenna at the same frequency are obtained.

  • PDF

Parammeter Optimization of the Electromagnetically Coupled Broadband Microstrip Antenna by Finite Difference Time Domain Method (시간영역 유한차분법을 이용한 전자기 결합 광대역 마이크로스트립 안테나의 파라메타 최적화)

  • 김정렬;윤현보
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.6 no.1
    • /
    • pp.17-27
    • /
    • 1995
  • In this paper, Finite Difference Time Domain (FDTD) method is used to analyze characteristics of the electromagnetically coupled broadband microstrip antenna, and to optimize the antenna parameters. By using short tuning stub in feedline, electromagnetically coupled microstrip antenna shows broadband (approximatcly equal 13%) characteristics, and the characteristics are varied as a function of length, width, and position of the tuning stub. Operating frequency, return loss, VSWR and input impedance are calculated by Fourier transforming the time domain results. Measurement data from fabricated electromagnetically coupled microstrip antenna are compared with FDTD results and are shown to be in good agreement. After optimization of the parameters, maximum bandwidth of about 15% is achieved.

  • PDF

Dual-Polarized 2 X 2 Array Antenna for Wireless LAN (무선 LAN용 이중 편파 2 X 2 배열 안테나)

  • 송성찬;이택경
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.7
    • /
    • pp.635-643
    • /
    • 2004
  • In this paper, dual-polarized 2${\times}$2 array antenna is designed and fabricated for the polarization diversity applications in wireless LAN system. For the improved bandwidth and isolation characteristics, the aperture coupled feeding and the L-shaped probe feeding are employed for each polarization. The measured bandwidths of the fabricated antenna are 210MHz for aperture coupled feeding and 280MHz for L-shaped probe feeding. The isolation for two ports is -40dB and the antenna gain is measured as 14.3${\pm}$0.2dBi in the operating frequency band of wireless LAN.