• Title/Summary/Keyword: Counter Force

Search Result 169, Processing Time 0.035 seconds

Research on direction of future Korean military force establishment -focus on North Korea's nuclear threat and neighboring countries' counter military threat operation- (미래 한국군 군사력 건설방향에 대한 연구 - 북한 핵위협과 주변국 위협대비를 중심으로 -)

  • Kim, Yeon Jun
    • Convergence Security Journal
    • /
    • v.14 no.1
    • /
    • pp.11-21
    • /
    • 2014
  • South Korea should not be in subordinate position in international relationships like the past. As the status of middle power. South Korea achieves peaceful unification through overcoming North Korea's nuclear and conventional threats, and builds military power in Northeast Asia as a 'balancer'. This can firstly be achieved by constructing "attack systems triad". 'attack systems triad' can be established through integrating the C41SR as a common strategy for the purposes of preemptive deterrence and retaliatory deterrence against the dangers of the present and the future. Second, denial deterrence can be achieved by establishing "defense system triad" by combining common military power and defensive weapon system. Finally, development of independent advanced technological strategies can be achieved by building defense industry and combination of research and development through constructing "Infra triad". As for constructing and reinforcing the future of the ROK military, a unilateral principle and policy efforts to achieve the aforementioned force construction models are needed. This can only be achieved through the government's national vision to take on the role of mediator and a basis founded upon the consensus of the public.

Analysis on Forces Acting on the Contact Lens Fitted on the Cornea (콘택트 렌즈에 작용하는 힘의 해석)

  • Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.1-11
    • /
    • 2002
  • A mathematical model is proposed to analyze the force; acting on the hard contact lens fitted on the cornea. The model incorporates the nonlinear equations and their numerical solution program, based on the formulations of surface tension force arising from the capillary action in the tear-film layer between the lens and cornea. The model simulates how the adhesion between lens and cornea varies according to the base curves and diameters of the lenses. When the spherical lens is fitted on the spherical cornea it is to rotate downward due to the weight of lens itself until it reaches an equilibrium position along the cornea where the counter(upward) moment caused by net force between the upper and lower portion of the periphery of lens. It is found that both the adhesion and displacement of lens along the cornea, where the gravity of lens balances the capillary-induced upward force, increases rapidly as the base curve of lens increases, i.e., as the lens gets flatter, while the increase in the diameter of lenses has resulted in the less increase in the rotation and adhesion. With the base curve and diameters of lenses being remained constant the increase in surface tension of tear film yields the increase in the adhesion between the cornea and lens while the initial rotation of lens is inversely proportional to the surface tension of the tear film.

  • PDF

Changes of Ground Reaction Forces by the Change of Club Length in Golf Swing (클럽의 길이 변화에 따른 골프 스윙의 지면반력 변화)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.31-40
    • /
    • 2007
  • Proper weight shifting is essential for a successful shot in golf swing and this could be described by means of the ground forces between the feet and ground. It is assumed that the ground forces would different according to the club used because the length and swing weight of each club is different. But, in present, it is not clear what changes are made by the change of clubs and this affect the swing motion. Therefore this study focused on the investigation of the changes of the ground forces and ground reaction forces (GRF) by the change of club length. The subjects were three professional male golfers. Four swings (driver, iron 3, iron 5, and iron 7) for each subject were taken by two high speed video cameras and two AMTI force platforms were used to measure the GRF simultaneously. Kwon GRF 2.0 and Mathcad 13 software were used to post processing the data. Changes of the three major component of GRF (Vertical, lateral, anterior-posterior force) at 10 predefined events were analyzed including the maximum. Major findings of this study were as follows. 1. Vertical forces; - There were no significant changes until the top of backswing. - Maximum was occurred at the club horizontal position in the downswing for both feet. The shorter club produced more maximum forces than longer ones in the left foot, but reverse were true for the right foot. - Maximum forces at impact shows the same patterns. 2. Lateral forces; Maximum was occurred at the club horizontal position for both feet, but there were no lateral forces because the direction of two forces was different. Maximum force pattern by different clubs was same as the vertical component. 3. Anterior-posterior forces; - This component made a counter-clock wise moment about a vertical axis located between two foot until the club vertical position was reached during the backswing, and reverse moment were produced when the club reached horizontal at the downswing. - Also this component made a forward moment about a horizontal axis located in the CG during the fore half of the downswing, and a reverse moment until the club reached vertical at the follow through phase. Maximum was occurred at the club vertical in the downswing for both feet. The longer club produced more maximum forces than shorter ones for both feet.

Tribological Behavior of Automotive Brake Pads with Different Sizes of an Abrasive Material(ZrSiO$_4$) (자동차용 마찰재의 연마제(ZrSiO$_4$) 크기에 따른 마찰특성에 관한 연구)

  • Hong, Young-Suk;Ko, Kil-Ju;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.180-186
    • /
    • 2000
  • Friction materials with four different sizes of zircon - l${\mu}{\textrm}{m}$, 6${\mu}{\textrm}{m}$, 75${\mu}{\textrm}{m}$, 140${\mu}{\textrm}{m}$- were investigated to evaluate the size effects of abrasive particles used in the automotive brake pads on brake performance. Although the brake pads with the largest size of zircon showed a good frictional stability and low wear, rotors were severely abraded due to the aggressiveness of coarse Bircon. As the siBe of zircon decreased. friction force and the amplitude of friction coefficient increased. Considering the above results, abrasive materials were thought to destroy transfer film and the extent of the destruction depends on the size of zircon. The small size zircon was not effective in developing a transfer layer on the rotor surface while minimizing the damage on the counter surface.

  • PDF

Cobalt Redox Electrolytes in Dye-Sensitized Solar Cells : Overview and Perspectives (염료감응 태양전지용 코발트 전해질의 최신 연구동향 및 전망)

  • Kwon, Young Jin;Kim, Hwan Kyu
    • Current Photovoltaic Research
    • /
    • v.2 no.1
    • /
    • pp.18-27
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs), developed two decades ago, are considered to be an attractive technology among various photovoltaic devices because of their low cost, accessible dye chemistry, ease of fabrication, high power conversion efficiency, and environmentally friendly nature. A typical DSSCs consists of a dye-coated $TiO_2$ photoanode, a redox electrolyte, and a platinum (Pt)-coated fluorine-doped tin oxide (FTO) counter electrode. Among them, redox electrolytes have proven to be extremely important in improving the performance of DSSCs. Due to many drawbacks of iodide electrolytes, many research groups have paid more attention to seeking other alternative electrolyte systems. With regard to this, one-electron outer sphere redox shuttles based on cobalt complexes have shown promising results: In 2014, porphyrin dye (SM315) with the cobalt (II/III) redox couple exhibited a power conversion efficiency of 13% in DSSCs. In this review, we will provide an overview and perspectives of cobalt redox electrolytes in DSSCs.

Hitting Probability on the Moving Target (이동표적에 대한 적중확률)

  • Oh H.J.
    • Journal of the military operations research society of Korea
    • /
    • v.1 no.1
    • /
    • pp.111-129
    • /
    • 1975
  • U.S. Air Force Regulation 80-1 defines that a weapon system is composed of equipments, skills, and techniques, the composite of which ferns an instrument of combat. The complete weapon system includes all related facilities, equipments, materials, services, and personnels required for the operation of the system, so that the instrument of combat can be considered as a self-sufficient unit of striking power in its intended operational environment. Effectiveness of a weapon system can be expressed as a function of its liability, reliability and performance capability. Among these attributes which influence the weapon effectiveness, performance capability is considered to be the most critical factor for many weapon systems. In order to illustrate the application of the methodology of performance capability, a specific ease study on the effectiveness of Vulcan anti-air craft gun system is presented with special emphasis on hitting probability on moving targets, effects of artificial rounds dispersion, and several principles related to the deployment of the system. This thesis includes the thorough survey of the possibility of calculating the absolute value of hitting probability on moving targets, indicates that the effects of artificial rounds dispersion increase the value of probability only when the total number of rounds fired within fire range exceeds a certain critical number, and suggests that concentrated guns deployment is better than scattered deployment in order to obtain higher probability and lower average amount of rounds if it is assumed that the effects of counter-attack from enemy threats are not serious.

  • PDF

A Study on the Reduction of Onboard Transformer Inrush Current of Electric Railway (전기철도 차량 내 변압기의 여자돌입전류 저감에 관한 연구)

  • Huh, Jae-Sun;Kang, Byoung-Wook;Shin, Hee-Sang;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2125-2130
    • /
    • 2010
  • The neutral section on electric railway system is significant sector in order to prevent short circuit of two electric powers. However, while electric trains pass the neutral section, those speed is decreased and the accident of AC electric traction system and the electric train would be occurred. So the countermeasures are urgently needed. The automatic power switching technology system that is current being research and development is system to improve these problems. Because main object of this system is power change using static switch in the neutral section, it's expected to cause a variety of transients. Especially, onboard transformer inrush current for electric railway train can be occurred more than rated current according to switching time. Therefore, the analysis and improvement are needed to ensure the stability of this system. In this paper, we analyze the operating characteristics of the automatic power switching technology system. Especially, it reviews inrush current according to the closing phase angle. And we propose control plan of inrush current considering the case that voltage is maintained due to counter electromotive force and regenerative braking operation of electric railway train. Finally, the proposed control scheme was reviewed using the transient analysis program.

Electrical Stimulation System Design for Pharyngeal Dysfunction of Stroke Patients (뇌졸중 환자의 인두기능 회복을 위한 전기자극기 설계)

  • 김성민;배하석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1232-1235
    • /
    • 2004
  • The purpose of this study is to design electrical stimulation system for pharyngeal dysfunction(dysphagia) in stroke patients. Pharyngeal muscle group activity is important, because contracting muscles provide the driving force at the initiation of the swallow and generate the pressure gradients necessary for bolus movement into the esophagus. Although we have many treatment methods for dysphagia, electrical stimulation system will be useful for stroke patients having dysphagia. Electrical stimulation can be divided into the body stimulation and electrodes. The body stimulation is divided again into frequency counter, time control and current measurement part. These parts are to control the current intensity, frequency and stimulating time. And they can be variable according to the patient's clinical assessment. The electrode plays a role to deliver the current from the system to the muscle. Also the position of the electrode can be variable according to the treatment method. We performed the clinical experiment with the stroke patient who has swallowing disorder. The videofluoroscopy was used for the observation. From the result of clinical experiment based on electrical stimulation, we expected that the dysfunction(in pharynx) level of the patient can be improved. However we could not have enough effectiveness of the treatment because of the number of patients, patient's adaptation and treatment period. We will design the optimized electrical stimulation system based on enough clinical experiment in the future.

  • PDF

Effect of Convex Wall Curvature on Three-Dimensional Behavior of Film Cooling Jet

  • Lee, Sang-Woo;Lee, Joon-Sik;Keon Kuk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1121-1136
    • /
    • 2002
  • The flow characteristics of film coolant issuing into turbulent boundary layer developing on a convex surface have been investigated by means of flow visualization and three-dimensional velocity measurement. The Schlieren optical system with a spark light source was adopted to visualize the jet trajectory injected at 35° and 90° inclination angles. A five-hole directional pressure probe was used to measure three-dimensional mean velocity components at the injection angle of 35°. Flow visualization shows that at the 90° injection, the jet flow is greatly changed near the jet exit due to strong interaction with the crossflow. On the other hand, the balance between radial pressure gradient and centrifugal force plays an important role to govern the jet flow at the 35° injection. The velocity measurement shows that at a velocity ratio of 0.5, the curvature stabilizes downstream flow, which results in weakening of the bound vortex structure. However, the injectant flow is separated from the convex wall gradually, and the bound vortex maintains its structure far downstream at a velocity ratio of 1.98 with two pairs of counter rotating vortices.

A EMG Signal Processing Algorithm for SMUAP Pattern Classification (SMUAP의 패턴분류를 위한 근 신호처리 알고리듬)

  • Lee, Jin;Jo, Il-Jun;Byun, Youn-Shik;Hong, Woan-Hue;Kim, Sung-Hwan
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.7
    • /
    • pp.106-111
    • /
    • 1989
  • A new EMG signal processing algorithm for SMUAP pattern classification is proposed. It checks the combination and regularity of ISI using a spike counter as a decision making routine, and performs SMUAP waveform alignment in frequency domain and selects spikes through FIR filtering. As a result, with the EMG signals recorded during 5 seconds at 10-50% MVC force level, the SMUAP ranged from five to nine units were classified and identification rate is greater than 55 percent using a concentric needle electrode. In the IBM PC/AT the processing time typically required 2 minutes.

  • PDF