• Title/Summary/Keyword: Counter Electrode

Search Result 287, Processing Time 0.031 seconds

The microstructure evolution and the efficiency of DSSC Counter Electrode with MWCNT addition (카본나노튜브 분산도에 따른 DSSC 상대전극 미세구조와 효율 변화)

  • Yu, Byung-Kwan;Han, Jeung-Jo;Noh, Yun-Young;Jang, Hyun-Chul;Sok, Jung-Hyun;Song, Oh-Sung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.836-839
    • /
    • 2011
  • 염료감응형 태양전지의 상대전극으로 MWCNT(multi-walled carbon nanotube)의 농도 (0.01~0.06g)를 달리하여 FTO(fluorine-doped tin oxide) glass에 분산시켜 상대전극을 만들었다. 그리고 glass/FTO/$TiO_2$/Dye(N719)/electrolyte(C6DMII,GSCN)/MWCNT/FTO/glass 구조를 가진 0.45$cm^2$급 DSSC(dye-sensitized solar cells) 소자를 만들었다. 소자의 미세구조, 분산정도, 광특성은 각각 광학현미경, SEM, source measure unit (Keithley model 2400) 장비를 이용하여 확인하였다. MWCNT 농도 증가와 FTO의 거친 표면형상에 따라 비선형적으로 MWCNT 분산면적이 증가하였고, MWCNT 농도 0.06g일 때 FTO 표면에 전체적으로 MWCNT가 완전히 분산됨을 확인하였다. 소자의 광변환 효율은 MWCNT 분산면적에 비례하는 효율을 보였고, MWCNT 분산농도인 0.06g 일 때 4.49%의 광변환 효율을 얻을 수 있었다.

  • PDF

A EMG Signal Processing Algorithm for SMUAP Pattern Classification (SMUAP의 패턴분류를 위한 근 신호처리 알고리듬)

  • Lee, Jin;Jo, Il-Jun;Byun, Youn-Shik;Hong, Woan-Hue;Kim, Sung-Hwan
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.7
    • /
    • pp.106-111
    • /
    • 1989
  • A new EMG signal processing algorithm for SMUAP pattern classification is proposed. It checks the combination and regularity of ISI using a spike counter as a decision making routine, and performs SMUAP waveform alignment in frequency domain and selects spikes through FIR filtering. As a result, with the EMG signals recorded during 5 seconds at 10-50% MVC force level, the SMUAP ranged from five to nine units were classified and identification rate is greater than 55 percent using a concentric needle electrode. In the IBM PC/AT the processing time typically required 2 minutes.

  • PDF

A Simulation Study of the Effect of Microstructural Design on the Performance of Solid Oxide Fuel Cells With Direct Internal Reforming (내부개질형 고체산화물 연료전지의 마이크로 전극구조가 성능에 미치는 영향에 관한 해석적 연구)

  • Sohn, Sangho;Nam, In Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.401-412
    • /
    • 2013
  • The paper is to study on the simulation of the micro/macroscale thermo-electrochemical model of a single cell of anode-supported SOFC with direct internal reforming. The coupled heat and mass transport, electrochemical and reforming reactions, and fluid flow were simultaneously simulated based on mass, energy, charge conservation. The micro/macroscale model first calculates the detailed electrochemical and direct internal reforming processes in porous electrodes based on the comprehensive microscale model and then solve the macroscale processes such as heat and mass transport, and fluid flow in SOFCs with assumption of fully-developed flow in gas channel. The simulation results evaluate the overall performance by analyzing distributions of mole fraction, current density, temperature and microstructural design in co/counter flow configurations.

The effect of dye coloring temperature on the dye-sensitized solar cells (염료감응형 태양전지의 염료 흡착 온도의 영향에 관한 연구)

  • Lee, Kyoung-Jun;Kim, Jeong-Hoon;Hong, Ji-Tae;Son, Min-Kyu;Seo, Hyun-Woong;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1279-1280
    • /
    • 2008
  • A serious problem of the 21st century is the supply of energy resources. Reserves of fossil fuels are facing depletion: renewable energy resources must be developed in this era. Dye sensitized solar cells(DSC) have been very economical and easy method to convert solar energy to electricity. DSC can reach low costs in future outdoor power applications. However, to commercialize the DSC, there are still many shortages to overcome. When the DSC is commercialized in the near future, the productivity is an important factor. In the process of soaking in a dye, it usually takes 12${\sim}$24 hours. In this study, we varied the dye coloring temperature from 0$^{\circ}C$ to 60$^{\circ}C$. At the temperature of 40$^{\circ}C$, DSC cell showed the best performance. We also conducted the time variant experiment to reduce the manufacturing time. Counter electrode surface of DSC is deposited by RF magnetron sputtering under the conditions of Ar $2.8{\times}10^{-3}torr$, RF power of 120W and substrate temperature of 100$^{\circ}C$.

  • PDF

Deposition Behavior and Photoelectrochemical Characteristics of Chlorophyll a Langmuir-Blodgett Films

  • Park, Hyun-Goo;Oh, Byung-Keun;Lee, Won-Hong;Park, Jeong-Woo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.3
    • /
    • pp.183-188
    • /
    • 2001
  • The deposition behavior and photoelectric response characteristics of chlorophyll a(Chl a) monolayers and multilayers were investigated under various film fabrication conditions. Chl a LB films were deposited onto quartz and pretreated ITO glass substrates under several fabrication conditions, including surface pressure and number of layers. The absorption spectra of Chl a in a solution state and solid-like state (LB films) were fairly consistent with each other, and two absorption peaks were found at 678 and 438nm, respectively. The prepared Chl a LB films were set into an electrochemistry cell equipped with a Pt plate as the counter electrode, and the photoelectric response characteristics were obtained and analyzed relative to the light illumination. By considering the resulting photocurrents, the optimal fabrication conditions for Chl a LB films were determined as 20mN/m of surface pressure and 20 layers. The action spectrum of the Chl a LB films was obtained in the visible region, and was found to be in good agreement with the absorption spectrum. The possible application of the proposed system as a constituent of an artificial color recognition device was suggested based on combining with the photoelectric conversion property of another light-sensitive biological pigment.

  • PDF

MWCNTs/V2O5 Nanowire Hetero-junction Actuator Devices (탄소나노튜브/V2O5 나노선 헤테로 구동소자 특성연구)

  • Lee Kang-Ho;Yee Seong-Min;Park So-Jeong;Huh Jung-Hwan;Kim Gyu-Tae;Park Sung-Joon;Ha Jeong-Sook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.250-254
    • /
    • 2006
  • Hetero-junction sheet actuator composed of carbon nanotubes and $V_{2}O_5$ nanowires were demonstrated in a bimetal configuration. The successive filtration of $V_{2}O_5$ nanowire solution followed by carbon nanotube dispersed water solution in the same way produced a dark-gray colored sheet. A significant actuation was observed in sodium chloride electrolyte solution with a bending direction to the carbon nanotube side at the positive bias voltage against the copper counter-electrode. As the frequency of the applied voltage increased, the amplitudes decreased, indicating a rather slow response of the hetero-film actuator in the electrolyte solution. The hybrid structure enabled an easy fabrication of the film actuator with the enhanced efficiencies.

Improved Conversion Efficiency of Dye-sensitized Solar Cells Based on TiO2 Porous Layer Coated TiO2 Nanotubes on a Titanium Mesh Substrate as Photoanode

  • Lim, Jae-Min;He, Weizhen;Kim, Hyung-Kook;Hwang, Yoon-Hwae
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.90-96
    • /
    • 2013
  • We report here flexible dye-sensitized solar cells (DSSC) based on Ti-mesh electrodes that show good mechanical flexibility and electrical conductivity. $TiO_2$ nanotube arrays prepared by electrochemical anodizing Ti-mesh substrate were used as photoanode. A Pt-coated Ti-mesh substrate was used as counter electrode. The photoanodes were modified by coating a $TiO_2$ porous layer onto the $TiO_2$ nanotubes in order to increase the specific surface area. To increase the long term stability of the DSSCs, a gel type electrolyte was used instead of a conventional liquid type electrolyte. The DSSC based on $33.2{\mu}m$ long porous $TiO_2$ nanotubes exhibited a better energy conversion efficiency of ~2.33%, which was higher than that of the DSSCs based on non-porous $TiO_2$ nanotubes.

저온에서 Hydropolymer를 이용한 ZnO 나노입자 염료감응형 태양전지

  • Gwon, Byeong-Uk;Son, Dong-Ik;Park, Dong-Hui;Hong, Tae-U;Choe, Heon-Jin;Choe, Won-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.439-439
    • /
    • 2011
  • 기존의 고온에서 제작되는 TiO2 나노 입자를 이용한 염료감응형 태양전지를 저온에서 제작하기 위해 전자 이동층으로 ZnO 나노 입자를 사용하여, 저온($200^{\circ}C$)에서 염료감응태양전지(DSSC)를 제작하였다[1,2]. 상대전극(counter electrode)으로는 RF magnetron sputtering을 사용하여 ITO/glass위에 Pt를 증착하여 태양전지의 특성을 측정하였다. $180^{\circ}C$ 이상에서 hydropolymer가 증발되는 것을 이용하여, ZnO 나노입자와 hydropolymer 혼합한 paste 제작하여 소결 후 ZnO 나노입자 사이에 다공성을 생성시켜 Dye가 잘 침투하여 ZnO 나노입자 표면에 잘 흡착 되도록 하였다[3]. 20 nm 및 60 nm 크기의 ZnO 나노 입자를 사용하여 실험 해본 결과, 20 nm에 비하여 60 nm ZnO 나노입자의 경우 IPCE 값이 약 7% 정도로 높은 전환효율 값을 보였다. 60 nm ZnO 나노입자를 전자 수송층으로 사용한 DSSC 소자에서 단위면적당 흐르는 전류(Jsc), 전압 (Voc), fill factor (ff), 그리고 효율(${\eta}$)의 최대값은 4.93 mA/$cm^2$, 0.56V, 0.40, and 1.12%, 로 보였다.

  • PDF

Fabrication and Properties of MFISFET Using $LiNbO_3$ Ferroelectric Films ($LiNbO_3$ 강유전체를 이용한 MFISFET의 제작 및 특성)

  • Jung, Soon-Won;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.135-139
    • /
    • 2008
  • MFISFETs with platinum electrode on the $LiNbO_3$/aluminum nitride/Si(100) structures were successfully fabricated and the properties of the FETs have been discussed. $I_D-V_G$ characteristics of MFISFETs for linear region (that is, 0.1 V of the drain voltage) showed hysteresis loop with a counter-clockwise trace due to the ferroelectric nature of $LiNbO_3$ films. A memory window (i.e., threshold voltage shift) of the fabricated device was about 2[V] for a sweep from -4 to +4[V]. The estimated field-effect electron mobility and transconductance on a linear region were 530[$cm^2/V{\cdot}s$] and 0.16[mS/mm], respectively. The drain current of 27[${\mu}A$] on the "on" state was more than 3 orders of magnitude larger than that of 30[nA] on the "off" state at the same "read" gate voltage of l.5[V], which means the memory operation of the MFISFET.

The Effect on Acoustic Band Characteristics of ZnO Piezoelectric Transducer according to Thickness of Counter Electrode Layers (하부전극층의 두께가 ZnO 압전변환기의 음향대역특성에 미치는 영향)

  • Park, Gi-Yub;Lee, Jong-Deok;Park, Soon-Tae
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.1
    • /
    • pp.18-26
    • /
    • 2000
  • In this paper, piezoelectric transducer was theoretically analyzed to fabricate high frequency piezoelectric transducer with broadband characteristics. Piezoelectric transducer have been fabricated with 3.825${\mu}m$ ZnO film on Pt/Sapphire(0001), and its appilicability of transducer was confirmed with analyzing theoretical and experimental frequency characteristic. The resonance frequency was detected at the frequency of 827.47MHz corresponding to the half-wavelength frequency of ZnO thin film. Insertion loss was almost -50dB. The minimum insertion loss agrees with simulation analysis.

  • PDF