Communications for Statistical Applications and Methods
/
v.4
no.3
/
pp.735-741
/
1997
In the present paper, we propose a new randomization device free mail survey method. The estimator based on proposed model is unbiased and more efficient than the estimator based on SIngh, Mangat and Singh model (SMS-model)(1993) when $\pi$<1/2, and more protective than SMS-model in view of the protection of privacy regardless of the values of $\pi$ and $\pi_Y$ only if we count the number of say 'Yes' from the respondents. However, If we consider the respondents that say 'No', the SMS-model is more protective than our model.
Recent discussions of observational constraints on the standard hot big bang model are reviewed and it is argued that now there is room for considering alternative cosmologies. The quasi-steady state cosmology is briefly described. This model seems to explain most of the observed features of the universe, including the m-z relation, radio source count, the light nuclear abundances and the microwave background.
Multiple-count problem is occurred when rectangle objects span across several buckets. The Cumulative Density (CD) histogram is a technique which solves multiple-count problem by keeping four sub-histograms corresponding to the four points of rectangle. Although it provides exact results with constant response time, there is still a considerable issue. Since it is based on a query window which aligns with a given grid, a number of errors may be occurred when it is applied to real applications. In this paper, we proposed selectivity estimation techniques using the generalized cumulative density histogram based on two probabilistic models: (1) probabilistic model which considers the query window area ratio, (2) probabilistic model which considers intersection area between a given grid and objects. In order to evaluate the proposed methods, we experimented with real dataset and experimental results showed that the proposed technique was superior to the existing selectivity estimation techniques. The proposed techniques can be used to accurately quantify the selectivity of the spatial range query on rectangle objects.
International Journal of Computer Science & Network Security
/
v.21
no.1
/
pp.1-5
/
2021
Cyberbullying is a problem that is faced in many cultures. Due to their popularity and interactive nature, social media platforms have also been affected by cyberbullying. Social media users from Arab countries have also reported being a target of cyberbullying. Machine learning techniques have been a prominent approach used by scientists to detect and battle this phenomenon. In this paper, we compare different machine learning algorithms for their performance in cyberbullying detection based on a labeled dataset of Arabic YouTube comments. Three machine learning models are considered, namely: Multinomial Naïve Bayes (MNB), Complement Naïve Bayes (CNB), and Linear Regression (LR). In addition, we experiment with two feature extraction methods, namely: Count Vectorizer and Tfidf Vectorizer. Our results show that, using count vectroizer feature extraction, the Logistic Regression model can outperform both Multinomial and Complement Naïve Bayes models. However, when using Tfidf vectorizer feature extraction, Complement Naive Bayes model can outperform the other two models.
The teat number of a sow plays an important role for weaning pigs and has been utilized in selection of swine breeding stock. Various linear models have been employed for genetic analyses of teat number although the teat number can be considered as a count trait. Theoretically, Poisson error mixed models are more appropriate for count traits than Normal error mixed models. In this study, the two models were compared by analyzing data simulated with Poisson error. Considering the mean square errors and correlation coefficients between observed and fitted values, the Poisson generalized linear mixed model (PGLMM) fit the data better than the Normal error mixed model. Also these two models were applied to analyzing teat numbers in four breeds of swine (Landrace, Yorkshire, crossbred of Landrace and Yorkshire, crossbred of Landrace, Yorkshire, and Chinese indigenous Min pig) collected in China. However, when analyzed with the field data, the Normal error mixed model, on the contrary, fit better for all the breeds than the PGLMM. The results from both simulated and field data indicate that teat numbers of swine might not have variance equal to mean and thus not have a Poisson distribution.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.1
/
pp.237-243
/
2017
In this paper, the detection performance of the electro-optical telescopes which observes and surveils space objects including artificial satellites, is analyzed. To perform the Modeling & Simulation(M&S) based analysis, satellite orbit model, telescope model, and the atmospheric model are constructed and a detection scenario observing the satellite is organized. Based on the organized scenario, pointing accuracy is analyzed according to the Field of View(FOV), which is one of the key factors of the telescope, considering pointing angle command error. In accordance with the preceding result, detection possibility according to the pixel-count of the detector and the FOV of the telescope is analyzed by discerning detection by Signal-to-Noise Ratio(SNR). The result shows that pointing accuracy increases with larger FOV, whereas the detection probability increases with smaller FOV and higher pixel-count. Therefore, major specification of the telescope such as FOV and pixel-count should be determined considering the result of M&S based analysis performed in this paper and the operational circumstances.
The Journal of Korean Institute of Communications and Information Sciences
/
v.33
no.8B
/
pp.667-680
/
2008
In this work, we present the results of our empirical study on 802.11 wireless LAN network traffic. We collect the packet trace from existing campus wireless LAN infra-structure. We analyzed four different data sets: aggregate traffic, upstream traffic, downstream traffic, tcp only packet trace from aggregate traffic. We analyze the time series aspect of underlying traffic (byte count process and packet count process), marginal distribution of time series, and packet size distribution. We found that in all four data sets there exist long-range dependent property in byte count and packet count process. Inter-arrival distribution is well fitted with Pareto distribution. Upstream traffic, i.e. from the user to Internet, exhibits significant difference in its packet size distribution from the rests. Average packet size of upstream traffic is 151.7 byte while average packet size of the rest of the data sets are all greater than 260 bytes. Packets with full data payloads constitutes 3% and 10% in upstream traffic and the downstream traffic, respectively. Despite the significant difference in packet size distribution, all four data sets have similar Hurst values. The Hurst alone does not properly explain the stochastic characteristics of the underlying traffic. We model the underlying traffic using fractional-ARIMA (FARIMA) and fractional Gaussian Noise (FGN). While the fractional Gaussian Noise based method is computationally more efficient, FARIMA exhibits superior performance in accurately modeling the underlying traffic.
A Blog provides commentary, news, or content on a particular subject. The important part of many blogs is interactive format. Sometimes, there is a heated debate on a topic and any article becomes a political or sociological issue. In this paper, we proposed a method to predict the popularity of an article in advance. First, we used hit count as a factor to predict the popularity of an article. We defined the saturation point and derived a model to predict the hit count of the saturation point by a correlation coefficient of the early hit count and hit count of the saturation point. Finally, we predicted the virtual temperature of an article using 4 types(explosive, hot, warm, cold). We can predict the virtual temperature of Internet discussion articles using the hit count of the saturation point with more than 70% accuracy, exploiting only the first 30 minutes' hit count. In the hot, warm, and cold categories, we can predict more than 86% accuracy from 30 minutes' hit count and more than 90% accuracy from 70 minutes' hit count.
Objective : Delayed cerebral ischemia (DCI) is a major cause of disability in patients who survive aneurysmal subarachnoid hemorrhage (aSAH). Systemic inflammatory markers, such as peripheral leukocyte count and systemic immune-inflammatory index (SII) score, have been considered predictors of DCI in previous studies. This study aims to investigate which systemic biomarkers are significant predictors of DCI. Methods : We conducted a retrospective, observational, single-center study of 170 patients with SAH admitted between May 2018 and March 2022. We analyzed the patients' clinical and laboratory parameters within 1 hour and 3-4 and 5-7 days after admission. The DCI and non-DCI groups were compared. Variables showing statistical significance in the univariate logistic analysis (p<0.05) were entered into a multivariate regression model. Results : Hunt-Hess grade "4-5" at admission, modified Fisher scale grade "3-4" at admission, hydrocephalus, intraventricular hemorrhage, and infection showed statistical significance (p<0.05) on a univariate logistic regression. Lymphocyte and monocyte count at admission, SII scores and C-reactive protein levels on days 3-4, and leukocyte and neutrophil counts on days 5-7 exhibited statistical significance on the univariate logistic regression. Multivariate logistic regression analysis revealed that monocyte count at admission (odds ratio [OR], 1.64; 95% confidence interval [CI], 1.04-2.65; p=0.036) and SII score at days 3-4 (OR, 1.55; 95% CI, 1.02-2.47; p=0.049) were independent predictors of DCI. Conclusion : Monocyte count at admission and SII score 3-4 days after rupture are independent predictors of clinical deterioration caused by DCI after aSAH. Peripheral monocytosis may be the primer for the innate immune reaction, and the SII score at days 3-4 can promptly represent the propagated systemic immune reaction toward DCI.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.