• Title/Summary/Keyword: Coulomb Collision

Search Result 7, Processing Time 0.025 seconds

Resolving the Inconsistency of Rigid Body Frictional Mechanics $-L\ddot{o}tstedt$'s Sliding Rod (마찰력이 개재된 강체역학에서 불일치의 해소 $-L\ddot{o}tstedt$의 미끄러지는 막대)

  • 한인환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.866-875
    • /
    • 1994
  • The problem of a rigid rod sliding on a rough horizontal surface in the plane is analyzed, which is commonly cited as an example of the inconsistency of rigid body frictional mechanics. The inconsistency is demonstrated by analyzing the normal reaction force at the contact point with the surface, and the concept of tangential collision is derived to resolve the inconsistency. Using the Poisson's hypothesis for the coefficient of restitution and Coulomb's law for the friction, the general methodology for solving the tangential collision is presented. The problem of the inconsistency generated in the sliding rod is completely resolved, building the concept of the tangential collision and adopting the theory of frictional impact. The result presented in this paper will obviate a generic obstacle to the development of simulation packages for planar rigid body mechanical systems with temporary contacts, and planning efficient motion strategies for robot manipulators.

Collision Simulation of a Floating Offshore Wind Turbine Considering Ductile Fracture and Hydrodynamics Using Hydrodynamic Plug-in HydroQus

  • Dong Ho Yoon;Joonmo Choung
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.111-121
    • /
    • 2023
  • This paper intends to introduce the applicability of HydroQus to a problem of a tanker collision against a semi-submersible type floating offshore wind turbine (FOWT). HydroQus is a plug-in based on potential flow theory that generates interactive hydroforces in a commercial Finite element analysis (FEA) code Abaqus/Explicit. Frequency response analyses were conducted for a 10MW capacity FOWT to obtain hydrostatic and hydrodynamic constants. The tanker was modeled with rigid elements, while elastic-plastic elements were used for the FOWT. Mooring chains were modeled to implement station keeping ability of the FOWT. Two types of fracture models were considered: constant failure strain model and combined failure strain model HC-LN model composed of Hosford-Coulomb (HC) model & localized necking (LN) model. The damage extents were evaluated by hydroforces and failure strain models. The largest equivalent plastic strain observed in the cases where both restoring force and radiation force were considered. Stress triaxiality and damage indicator analysis showed that the application of HC-LN model was suitable. It could be stated that applications of suitable failure strain model and hydrodynamics into the collision simulations were of importance.

Generation of Electromagnetic Energy in a Refractory Metal Thermionic Diode (내화금속 다이오드에서 전자기에너지 발전에 관한 연구)

  • Lee, Deuk-Yong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.823-828
    • /
    • 1992
  • A thermionic energy converter test station is constructed for the study of electromagnetic energy generation. Of particular interest is the frequency variations due to changes in the interelectrode gap, the electrode temperature, and the cesium vapor pressure. It is found experimentally that the most intense ratio-frequency(rf) oscillations occur at two non-overlapping regions.

  • PDF

Numerical Simulation of Arch-type Submarine Cable Protector under Anchor Collision (아치형 해저 케이블 보호 구조물의 앵커 충돌 수치 시뮬레이션)

  • Woo, Jin-Ho;Na, Won-Bae;Kim, Heon-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.96-103
    • /
    • 2009
  • In 2006, Jeju Island in South Korea experienced a crisis, no electricity for three hours anywhere in the entire island. This incident was caused by a domino effect that occurred after one of the submarine power cables connecting the island to Haenam, a coastal city on the mainland, was damaged by an external load, probably from a ship anchor or a steel pile being used in marine farming. This study presents a collision analysis of a new submarine power cable protector called arch type reinforced concrete. For the analysis, a dynamic finite element program, ANSYS AUTODYN, was used to examine the displacement and stress of the submarine power cable protector using different material models (RHT concrete model, Mohr.Coulomb concrete model). In addition, two reinforcing bar spacings, 75 mm and 150 mm, were considered. From the analyses, the effects of the parameters (concrete model and spacing) on the results (displacement and stress) were analyzed, and the relations between the damage and parameters were found.

Dynamics of Interacting Multiple Autonomous Mobile Robots (복수의 자율 이동 로보트 상호간의 동역학)

  • Lee, Suck-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.3
    • /
    • pp.308-315
    • /
    • 1991
  • This paper deals with the global dynamic behavior of multiple autonomous mobile robots with suggested navigation strategies within unbounded and bounded spatial domain. We derive some navigation strategies of robots wirh complete detectability with finite range to reach their goal states without collision which is motivated by Coulomb's law regarding repulsive and attractive forces between electrical charges. An analysis of the dynamic behavior of the interacting robots with the suggested navigation strategies under the assumption that communication is not permissible between robots is made and some examples are illustrated by computer simulation. The convergence of robot motions to their goal states under certain conditions is established by considering their global dynamic behavior even when some objects are close to their goal points.

  • PDF

Three-Dimensional Particle-in-cell Simulation of Electron Cyclotron Resonance Plasma with Belt-type Magnet Assembly

  • Lee, Hui Jea;Kim, Seong Bong;Yoo, Suk Jae;Cho, Moohyun;Namkung, Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.242.1-242.1
    • /
    • 2014
  • The electron cyclotron resonance plasma source with a belt-type magnet assembly (BMA) is designed for effective plasma confinements. For characterizing the plasma source, the plasma parameters are measured by Langmuir probe. However, the plasma parameters and the motion of charged particles near the ECR zone are not easy to diagnostics, because of the high plasma density and temperature. Thus, as an alternative method, the electromagnetic simulation of the plasma source has been performed by using three-dimensional particle-in-cell and Monte Carlo collisional (PIC-MCC) simulation codes. For considering the limitation of simulation resources and time, the periodic boundary condition is applied and the coulomb collision is neglected. In this paper, we present the results of 3D PIC simulations of ECR plasmas with BMA and we compare them with the experimental results.

  • PDF

Analysis of Three-Dimensional Rigid-Body Collisions with Friction -CoIlisions between EIlipsoids- (마찰력이 개재된 3차원 강체충돌 해석 - 타원체간 충돌 -)

  • Han, In-Hwan;Jo, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1486-1497
    • /
    • 1996
  • The problem of determining the 3-demensional motion of any two rough bodies after a collision involves some rather long analysis and yet in some points it differs essentially from the corresponding problem in tdwo dimensions. We consider a special problem where two rough ellipsolids moving in any manner collide, and analyze the three dimensional impact process with Coulomb friction and Poisson's hypothesis. The differential equations that describe that process of the impact induce a flow in the tangent velocity space, the flow patterns characterize the possible impact cases. By using the graphic method in impulse space and numerical integration thchnique, we analyzed the impact process inall the possible cases and presented the algorithm for determining the post-impact motion. The principles could be applied to the general problem in three dimensions. We verified the effectiveness of the analysis results by simulating the numerous significant examples.