• 제목/요약/키워드: Cost of energy

검색결과 4,605건 처리시간 0.034초

Analysis of Initial Cost by Law Standards Alteration of Domestic Windows (국내 창호의 법적기준 변화에 따른 초기투자비 검토)

  • Jin, Su-Hwuy;Kim, Sam-Uel;Park, Yul
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.111-114
    • /
    • 2011
  • Building components such as walls and windows causes the loss of many energy. The current of windows are using by the law standards that have been every reinforce the year from 2008. As the more reinforcement of legal standards, benefits of energy is possible to raising, But it is must to considered LCC and connectivity. In this study, the alteration for Law Standards is examining influence for initial cost. Accordingly, We are searches by using to windows products in domestic office building which choosing to window types in Law Standards, we are analyzed for initial cost of building out of the apartment.

  • PDF

Life Cycle Cost Analysis of Primary Cooling System by Systematic Support Cost (각종지원금제도에 의한 냉열원시스템의 라이프 사이클 코스트 분석)

  • Kim, C.M.;Jung, S.S.;Choi, C.H.
    • Journal of the Korean Solar Energy Society
    • /
    • 제22권4호
    • /
    • pp.97-106
    • /
    • 2002
  • The purpose of this study is to analyze the life cycle cost of primary cooling system by systematic support cost. Life Cycle Cost(LCC) is the process of making an economic assessment of an item, area, system, or facility by considering all significant costs of ownership over an economic life, expressed in terms of equivalent costs. The essence of life cycle costing is the analysis of equivalent costs of various alternative proposals. In order to select economical primary cooling system in early heat source plan stages, the research investigates cost items and cost characteristics during project process phases such as planning/design, construction, maintenance /management, and demolition/sell phases. The study also analyze the life cycle cost by capacity leading to suggest the most economical primary cooling system by systematic support cost.

A Study on the Life Cycle Cost Analysis of the See-through a-si Building Integrated Photovoltaic System (투광형 비정질 BIPV 시스템의 LCC 평가에 관한 연구)

  • Lee, Han-Myoung;Oh, Min-Seok;Kim, Hway-Suh
    • Journal of the Korean Solar Energy Society
    • /
    • 제29권1호
    • /
    • pp.1-10
    • /
    • 2009
  • This study was carried out to evaluate the Life Cycle Cost(LCC) of three types of RTPV(Building Integrated Photovoltaic) systems-Glass plus Granite. Crystalline BIPV and See through Amorphous BIPV-which were vertically installed to generate the same power output(76 kW level). Initial investment costs. cost. savings and maintenance costs had been predicted during the period of analysing the LCC of three types of BIPV(Building Integrated Photovoltaic) systems installed for the purpose of evaluating the LCC. In case of cost savings, it had been analyzed by measuring the amount of electric power generated, reduction in lighting load and heat & cooling loads through simulation. From this analysis, it was predicted that the See-through amorphous BIPV offering cost saving advantages demonstrated the economical efficiency similar to the Class plus Granite when it is backed by more than 20 years of durability.

Effects of Reactor Type on the Economy of the Ethanol Dehydration Process: Multitubular vs. Adiabatic Reactors

  • Yoo, Kee-Youn
    • Korean Chemical Engineering Research
    • /
    • 제59권3호
    • /
    • pp.467-479
    • /
    • 2021
  • Abstract: A kinetic model was developed for the dehydration of ethanol to ethylene based on two parallel reaction pathways. Kinetic parameters were estimated by fitting experimental data of powder catalysts in a lab-scale test, and the effectiveness factor was determined using data from pellet-type catalysts in bench-scale experiments. The developed model was used to design a multitubular fixed-bed reactor (MTR) and an adiabatic reactor (AR) at a 10 ton per day scale. The two different reactor types resulted in different process configurations: the MTR consumed the ethanol completely and did not produce the reaction intermediate, diethyl ether (DEE), resulting in simple separation trains at the expense of high equipment cost for the reactor, whereas the AR required azeotropic distillation and cryogenic distillation to recycle the unreacted ethanol and to separate the undesired DEE, respectively. Quantitative analysis based on the equipment and annual energy costs showed that, despite high equipment cost of the reactor, the MTR process had the advantages of high productivity and simple separation trains, whereas the use of additional separation trains in the AR process increased both the total equipment cost and the annual energy cost per unit production rate.

Revenue Maximizing Scheduling for a Fast Electric Vehicle Charging Station with Solar PV and ESS

  • Leon, Nishimwe H.;Yoon, Sung-Guk
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권3호
    • /
    • pp.315-319
    • /
    • 2020
  • The modern transportation and mobility sector is expected to encounter high penetration of Electric Vehicles (EVs) because EVs contribute to reducing the harmful emissions from fossil fuel-powered vehicles. With the prospective growth of EVs, sufficient and convenient facilities for fast charging are crucial toward satisfying the EVs' quick charging demand during their trip. Therefore, the Fast Electric Vehicle Charging Stations (FECS) will be a similar role to gas stations. In this paper, we study a charging scheduling problem for the FECS with solar photovoltaic (PV) and an Energy Storage System (ESS). We formulate an optimization problem that minimizes the operational costs of FECS. There are two cost and one revenue terms that are buying cost from main grid power, ESS degradation cost, and revenue from the charging fee of the EVs. Simulation results show that the proposed scheduling algorithm reduces the daily operational cost by effectively using solar PV and ESS.

Estimate of Additional Construction Cost as Certifying G-SEED of Office Building in Korea

  • Kim, Jea-Moon;Shin, Sung-Joon;Hur, In
    • KIEAE Journal
    • /
    • 제14권5호
    • /
    • pp.21-28
    • /
    • 2014
  • To improve environmental problem as globally climate changes, domestic and foreign government have been trying to reduce green gas emitted by all industries. With making the green building certification system that assess the substantiality and energy performance of building, a governments have been using by a way for reducing green gas emitted in building industry. G-SEED(Green Standard for Energy & Environmental Design) developed in Korea have been reinforcing, and a number of projects certifying the G-SEED have been increasing continuously. As a demand of G-SEED certification is rising, a question on the additional cost data as certifying G-SEED is rising. It is because additional cost as getting the certification is important fact for G-SEED level decision and whether getting the certification or not. Therefore, this study analyzed additional construction cost as certifying G-SEED through performance improvement and design change of general office building not to get G-SEED. In conclusion, an additional construction cost ratio of G-SEED projects to the reference building is drawn as certified level; +0.26%, silver level; +2.29%, gold level; +3.89%, and platinum level; +5.48%.

An Application Analysis of Renewable Energy for Public Building and an Analysis of Building Energy Substitution Rate (공공건축물의 신재생에너지 적용분석 및 건물에너지 분담률 분석)

  • Kang, Su-Hyun;Yu, Si-Wan;Hwang, Jung-Ha;Cho, Young-Hum
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.348-353
    • /
    • 2011
  • Recently the renewable energy has been used widely and the importance of renewable sources is bigger than before. So the government enforced a law to the public buildings to install the renewable energy facilities. The capacity of facilities is 5% of total construction cost until April 13, 2011. Since then, the government changed the law from 5% of total construction cost to 10% of predicted energy usage because of the practical use of the renewable energy facilities. So, in this study, the comparative analysis is conducted according to the law to the building installed PV system through the EnergyPlus simulation.

  • PDF

Economic Analysis on Solar Energy System with Decision Support Models (의사 결정지원 모형에 의한 태양에너지 이용시스템의 경제성 고찰)

  • Chea, In-Su;Jo, Dok-Ki;Chea, Young-Hi
    • Solar Energy
    • /
    • 제10권1호
    • /
    • pp.63-79
    • /
    • 1990
  • It has been recognized that a policy for supplying solar house and hot water production systems utilizing solar energy needs to be driven to save civilian comsuming energy or to develop alternative energy. However, the economic feasibility study of solar energy systems must be carried out before their practical use. The purpose of this study is to furnish information for supplying policy and enlightening users with the economic feasibility study of solar house and hot water production systems. Decision support systems are established to carry out economic analysis on solar systems more accurately. Therefore, computer simulation is carried out to analyze the performance of solar systems and also economic feasibility study by trial and error method is carried out. Fuel cost and additional cost for solar systems are estimated employing present worth concept and economic analysis has been conducted using the break-even point analysis method and life-cycle cost analysis method.

  • PDF

A Fault Tolerant Data Management Scheme for Healthcare Internet of Things in Fog Computing

  • Saeed, Waqar;Ahmad, Zulfiqar;Jehangiri, Ali Imran;Mohamed, Nader;Umar, Arif Iqbal;Ahmad, Jamil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권1호
    • /
    • pp.35-57
    • /
    • 2021
  • Fog computing aims to provide the solution of bandwidth, network latency and energy consumption problems of cloud computing. Likewise, management of data generated by healthcare IoT devices is one of the significant applications of fog computing. Huge amount of data is being generated by healthcare IoT devices and such types of data is required to be managed efficiently, with low latency, without failure, and with minimum energy consumption and low cost. Failures of task or node can cause more latency, maximum energy consumption and high cost. Thus, a failure free, cost efficient, and energy aware management and scheduling scheme for data generated by healthcare IoT devices not only improves the performance of the system but also saves the precious lives of patients because of due to minimum latency and provision of fault tolerance. Therefore, to address all such challenges with regard to data management and fault tolerance, we have presented a Fault Tolerant Data management (FTDM) scheme for healthcare IoT in fog computing. In FTDM, the data generated by healthcare IoT devices is efficiently organized and managed through well-defined components and steps. A two way fault-tolerant mechanism i.e., task-based fault-tolerance and node-based fault-tolerance, is provided in FTDM through which failure of tasks and nodes are managed. The paper considers energy consumption, execution cost, network usage, latency, and execution time as performance evaluation parameters. The simulation results show significantly improvements which are performed using iFogSim. Further, the simulation results show that the proposed FTDM strategy reduces energy consumption 3.97%, execution cost 5.09%, network usage 25.88%, latency 44.15% and execution time 48.89% as compared with existing Greedy Knapsack Scheduling (GKS) strategy. Moreover, it is worthwhile to mention that sometimes the patients are required to be treated remotely due to non-availability of facilities or due to some infectious diseases such as COVID-19. Thus, in such circumstances, the proposed strategy is significantly efficient.

Energy Efficiency Analysis of Cellular Downlink Transmission with Network Coding over Rayleigh Fading Channels

  • Zhu, Jia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권3호
    • /
    • pp.446-458
    • /
    • 2013
  • Recently, energy-efficient cellular transmission has received considerable research attention to improve the energy efficiency of wireless communication. In this paper, we consider a cellular network consisting of one base station (BS) and multiple user terminals and explore the network coding for enhancing the energy efficiency of cellular downlink transmission from BS to users. We propose the network coded cellular transmission scheme and conduct its energy consumption analysis with target outage probability and data rate requirements in Rayleigh fading environments. Then, the energy efficiency in Bits-per-Joule is further defined and analyzed to evaluate the number of bits delivered per Joule of energy cost. Numerical results show that the network coded cellular transmission significantly outperforms the traditional cellular transmission in terms of energy efficiency, implying that given a Joule of energy cost, the network coded cellular transmission scheme can deliver more bits than the traditional cellular transmission.