• Title/Summary/Keyword: Cosmic rays

Search Result 127, Processing Time 0.021 seconds

NONTHERMAL COMPONENTS IN THE LARGE SCALE STRUCTURE

  • MINIATI FRANCESCO
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.465-470
    • /
    • 2004
  • I address the issue of nonthermal processes in the large scale structure of the universe. After reviewing the properties of cosmic shocks and their role as particle accelerators, I discuss the main observational results, from radio to $\gamma$-ray and describe the processes that are thought be responsible for the observed nonthermal emissions. Finally, I emphasize the important role of $\gamma$-ray astronomy for the progress in the field. Non detections at these photon energies have already allowed us important conclusions. Future observations will tell us more about the physics of the intracluster medium, shocks dissipation and CR acceleration.

BLACK HOLE-IGM FEEDBACK, AND LINKS TO IGM FIELDS AND CR'S

  • KRONBER PHILIPP P.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.501-507
    • /
    • 2004
  • The uniquely large dimensions of Giant radio galaxies (GRGs) make it possible to probe for stringent limits on total energy content, Faraday rotation, Alfven speeds, particle transport and radiation loss times. All of these quantities are more stringently limited or specified for GRG's than in more 'normal' FRII radio sources. I discuss how both global and detailed analyses of GRG's lead to constraints on the CR electron acceleration mechanisms in GRG's and by extension in all FRII radio sources. The properties of GRG's appear to rule out large scale Fermi-type shock acceleration. The plasma parameters in these systems set up conditions that are favorable for magnetic reconnection, or some other very efficient process of conversion of magnetic to particle energy. We conclude that whatever mechanism operates in GRG's is probably the primary extragalactic CR acceleration mechanism in the Universe.

NEW PROBES OF INTERGALACTIC MAGNETIC FIELDS BY RADIOMETRY AND FARADAY ROTATION

  • KRONBERG PHILIPP P.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.343-347
    • /
    • 2004
  • The energy injection of galactic black holes (BH) into the intergalactic medium via extragalactic radio source jets and lobes is sufficient to magnetize the IGM in the filaments and walls of Large Scale Structure at < [B] > ${\~}0.l{\mu}G$ or more. It appears that this process of galaxy-IGM feedback is the primary source of IGM cosmic rays(CR) and magnetic field energy. Large scale gravitational infall energy serves to re-heat the intergalactic magnetoplasma in localities of space and time, maintaining or amplifying the IGM magnetic field, but this can be thought of as a secondary process. I briefly review observations that confirm IGM fields around this level, describe further Faraday rotation measurements in progress, and also the observational evidence that magnetic fields in galaxy systems around z=2 were approximately as strong then, ${\~}$10 Gyr ago, as now.

SPENVIS를 이용한 우주환경 영향 시뮬레이션

  • 이주희;최기혁;김종우;서석배;임현수
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.93-93
    • /
    • 2003
  • 우주환경은 궤도상의 우주비행체 임무에 다양한 종류의 문제를 발생시킬 수 있으며, 이러한 우주환경 인자로는 방사선대, 태양으로부터 날아오는 고에너지 입자, 우주선(cosmic rays), 플라즈마(plasmas), 미세 우주 파편 등 다양하게 존재한다. 따라서 인공위성을 비롯한 우주비행체의 설계 시 우주환경에 대한 영향을 사전에 예측하고 이를 우주비행체 개발에 반영하고 있다. European Spare Research & Technology Center(ESTEC)는 1998년 European Space Agency(ESA)의 지원을 받아 Space Environment Information System(SPENVIS) 프로젝트를 시작하였다. SPENVIS는 인공위성을 비롯한 우주비행체의 우주환경에 대한 영향을 연구할 수 있는 인터넷 기반 시뮬레이션 프로그램으로서 각종 우주환경 모델을 통해 사용자가 파라메타(parameter) 값을 입력하고 그래픽과 텍스트로 결과를 알아볼 수 있다. SPENVIS 시스템은 인터넷으로 사용자 등록을 통해 이용 가능하며, 시스템의 지속적인 개선 및 확장을 통해 신뢰도를 높여가고 있다. 본 시뮬레이션 연구수행을 통하여 SPENVIS의 우주환경 영향 연구에 향후 활용 가능성을 알아보고자 한다.

  • PDF

Chemical composition of Am stars: RR Lyn and $\rho$ Pup

  • Yushchenko, A.V.;Lee, J.J.;Kang, Y.W.;Doikov, D.N.
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.22.3-22.3
    • /
    • 2008
  • We present the results of the investigations of high dispersion spectra of two stars. These are the eclipsing binary RR Lyn, and $\rho$ Pup - the prototype of the group of pulsating variables. The spectra were obtained at 1.8 m Bohyuunsan observatory telescope, and 8.2 m VLT. We found the chemical composition. The both components of RR Lyn are Am stars (metallic line stars), but the abundance patterns of the components are not similar - the iron abundance and the abundances of other elements are surely different. For few elements the differences exceeds 1 dex. We found the abundances of 56 chemical elements in the atmosphere of $\rho$ Pup. This is one of the best stellar abundance patterns. It permits to investigate the role of the charge-exchange reactions in stellar atmospheres. These reactions can produce the abundance anomalies in the atmospheres of B-F type stars. These reactions can be one of the sources of galactic cosmic rays, and the reason of the braked rotation of A-F type chemically peculiar stars.

  • PDF

Application of a Coupled Harmonic Oscillator Model to Solar Activity and El Niño Phenomena

  • Muraki, Yasushi
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.75-81
    • /
    • 2018
  • Solar activity has an important impact not only on the intensity of cosmic rays but also on the environment of Earth. In the present paper, a coupled oscillator model is proposed to explain solar activity. This model can be used to naturally reduce the 89-year Gleissberg cycle. Furthermore, as an application of the coupled oscillator model, we herein attempt to apply the proposed model to El $Ni{\tilde{n}}o$-southern oscillation (ENSO). As a result, the 22-year oscillation of the Pacific Ocean is naturally explained. Finally, we search for a possible explanation for coupled oscillators in actual solar activity.

Simulating the 3.4-Micron Feature of Titan's Haze

  • Kim, Y.S.;Ennis, C.;Kim, Sang Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.759-762
    • /
    • 2013
  • Four prominent features of Titan's haze are found within the '3.4-${\mu}m$' absorption to be uniform with recent vertically resolved Cassini/VIMS spectra. These are absorptions at 2998 $cm^{-1}$ (3.34 ${\mu}m$), 2968 $cm^{-1}$ (3.37 ${\mu}m$), 2927 $cm^{-1}$ (3.42 ${\mu}m$), and 2882 $cm^{-1}$ (3.47 ${\mu}m$). A detailed fitting suggests that the 2998 $cm^{-1}$ feature could originate from amorphous acetonitrile ($CH_3CN$) carrying about 25% of integrated optical depth; the remaining features, which account for 75% of the integrated optical depth, could arise from a distinct triplet (C-H stretching) structure of radiolyzed hydrocarbons. An additional feature was possibly evidenced at altitudes higher than 300 km and attributable to 'polymer-capped' methane ($CH_4$), significantly constraining the chemical composition of organic haze layers under Titan's active radiation field.

Diffusive Shock Acceleration Modeling of Radio Relics in Clusters of Galaxies

  • Kang, Hye-Sung;Ryu, Dong-Su
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.44.2-44.2
    • /
    • 2012
  • Cosmological shock waves result from supersonic flow motions induced by hierarchical clustering during the large-scale structure formation in the Universe. Suprathermal particles are known to be produced via plasma interactions at collisionless shocks in tenuous plasmas and they can be further accelerated to become cosmic rays (CRs) via diffusive shock acceleration (DSA). The presence of CR electrons has been inferred from observations of diffuse radio halos and relics in some merging galaxy clusters. We have calculated the emissions from CR electrons accelerated at weak planar shocks, using time-dependent DSA simulations that include energy losses via synchrotron emission and Inverse Compton scattering. The simulated nonthermal emission are used to model the synchrotron emission from several observed radio relics.

  • PDF

A comparison study of CORSIKA and COSMOS simulations for extensive air showers

  • Kim, Ji-Hee;Roh, Soon-Young;Ryu, Dong-Su;Kang, Hye-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.69.1-69.1
    • /
    • 2012
  • Monte Carlo codes for extensive air shower (EAS) simulate the development of EASs initiated in the Earth's atmosphere by ultra-high energy cosmic rays (UHECRs) with energy exceeding - $10^{18}$ eV. Here, we compare EAS simulations with two different codes, CORSIKA and COSMOS, presenting quantities including the longitudinal distribution of particles, depth of shower maximum, kinetic energy distribution of particle at the ground, and calorimetric energy. In addition, the lateral distribution of local energy density far from the EAS core has been known as an important quantity to estimate the energy of UHECRs. We also present the lateral distribution function obtained from GEANT4 simulations for detector response.

  • PDF

Simulating astrophysical shocks with a combined PIC MHD code

  • van Marle, Allard Jan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.56.2-56.2
    • /
    • 2018
  • Astrophysical shocks accelerate particles to high velocities, which we observe as cosmic rays. The acceleration process changes the nature of the shock because the particles interact with the local magnetic field, removing energy and potentially triggering instabilities. In order to simulate this process, we need a computational method that can handle large scale structures while, at the same time, following the motion of individual particles. We achieve this by combining the grid magnetohydrodynamics (MHD) method with the particle-in-cell (PIC) approach. MHD can be used to simulate the thermal gas that forms the majority of the gas near the shock, while the PIC method allows us to model the interactions between the magnetic field and those particles that deviate from thermal equilibrium. Using this code, we simulate shocks at various sonic and Alfvenic Mach numbers in order to determine how the behaviour of the shock and the particles depends on local conditions.

  • PDF