Browse > Article
http://dx.doi.org/10.5140/JASS.2018.35.2.75

Application of a Coupled Harmonic Oscillator Model to Solar Activity and El Niño Phenomena  

Muraki, Yasushi (Institute for Space-Earth Environment Research, Nagoya University)
Publication Information
Journal of Astronomy and Space Sciences / v.35, no.2, 2018 , pp. 75-81 More about this Journal
Abstract
Solar activity has an important impact not only on the intensity of cosmic rays but also on the environment of Earth. In the present paper, a coupled oscillator model is proposed to explain solar activity. This model can be used to naturally reduce the 89-year Gleissberg cycle. Furthermore, as an application of the coupled oscillator model, we herein attempt to apply the proposed model to El $Ni{\tilde{n}}o$-southern oscillation (ENSO). As a result, the 22-year oscillation of the Pacific Ocean is naturally explained. Finally, we search for a possible explanation for coupled oscillators in actual solar activity.
Keywords
22-year solar cycle; Gleissberg cycle; ENSO; PDO; coupled oscillator model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Japan Meteorological Agency (JMA), Yakushima metrological data [Internet], cited 2017, available from: http://www.data.jma.go.jp/obd/stats/etrn/view/monthly_s3.php?prec_no=88&block_no=47836&year=&month=&day=&view=p4
2 Kitagawa H, Matsumoto E, Climate implications of ${\delta}^{13}C$ variations in a Japanese cedar (Cryptomeria japonica) during the last two millenia, Geophys. Res. Lett. 22, 2155-2158 (1995). https://doi.org/10.1029/95GL02066   DOI
3 Minobe S, Schneider N, Deser C, Liu Z, Mantua N, et al., Pacific decadal variability: a review, submitted to Journal of Climate (2004). available from: www.cgd.ucar.edu/staff/cdeser/docs/jclim_minobe-pdv.pdf
4 Muraki Y, Mitsutani T, Shibata S, Kuramata S, Masuda K, et al., Regional climate pattern during two millennia estimated from annual tree rings of Yaku cedar trees: a hint for solar variability? Earth Planets Space 67, 31 (2015). https://doi.org/10.1186/s40623-015-0198-y   DOI
5 Nitta T, Unusual summer weather over Japan in 1988 and its relationship to the tropics, J. Meteorol. Soc. Japan 68, 575-587 (1990).   DOI
6 Osaki Y, Nonradial oscillations of a 10 solar mass star in the main-sequence stage, Pupl. Astron. Soc. Japan 27, 237-258 (1975).
7 Peristykh AN, Damon PE, Persistence of the Gleissberg 88-year solar cycle over the last -12,000 years: Evidence from cosmogenic isotopes, J. Geophys. Res. 108, 1003 (2003). https://doi.org/10.1029/2002JA009390   DOI
8 Schneider N, Miller AJ, Predicting western North Pacific ocean climate, J. Clim. 14, 3997-4002 (2001). https://doi.org/10.1175/1520-0442(2001)014<3997:PWNPOC>2.0.CO;2   DOI
9 Zhao J, Bogart RS, Kosovichev AG, Duvall Jr. TL, Hartlep T, Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the Sun, Astrophys. J. Lett. 774, L29 (2013). https://doi.org/10.1088/2041-8205/774/2/L29   DOI
10 Zhao J, Kosovichev AG, Bogart RS, Solar meridional flow interior during the rising phase of cycle 24, Astrophys. J. Lett. 789, L7 (2014). https://doi.org/10.1088/2041-8205/789/1/L7   DOI
11 Zharkova VV, Shepherd SJ, Popova E, Zharkov SI, Heartbeat of the Sun from principal component analysis and prediction of solar activity on a millenium timescale, Sci. Rep. 5, 15689 (2015). https://doi.org/10.1038/srep15689   DOI
12 Guilyardi E, El Nino-mean state-seasonal cycle interactions in a multi-model ensemble, Clim. Dyn. 26, 329-348 (2006). https://doi.org/10.1007/s00382-005-0084-6   DOI
13 Babcock HW, The topology of the Sun's magnetic field and the 22-year cycle, Astrophys. J. 133, 572-587 (1961). https://doi.org/10.1086/147060   DOI
14 Barlow M, Nigam S, Berbery EH, ENSO, Pacific decadal variability, and U.S. summer time precipitaion, and stream flow, J. Clim. 14, 2105-2128 (2001). https://doi.org/10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2   DOI
15 Belucz B, Dikpati M, Forgacs-Dajek E, A Babcock-Leighton solar dynamo model with multi-cellular meridional circulation in advection- and diffusion-dominated regimes, Astrophys. J. 806, 169 (2015). https://doi.org/10.1088/0004-637X/806/2/169   DOI
16 Charbonneau P, Dynamo models of the solar cycle, Living Rev. Sol. Phys. 7, 3 (2010). https://doi.org/10.12942/lrsp-2010-3   DOI
17 Choudhuri AR, Schussler M, Dikpati M, The solar dynamo with meridional circulation, Astron. Astrophys. 303, L29-L32 (1995).
18 Hare SR, Mantua NJ, Empirical evidence for North Pacific regime shifts in 1977 and 1989, Prog. Oceanogr. 47, 103-145 (2000). https://doi.org/10.1016/S0079-6611(00)00033-1   DOI
19 Hathaway DH, The solar cycle, Living Rev. Sol. Phys. 7, 1 (2010). https://doi.org/10.12942/lrsp-2010-1   DOI
20 Aizenman A, Smeyers P, Weigert A, Avoided crossing of modes of non-radial stellar oscillation, Astron. Astrophys. 58, 41-46 (1977).
21 Horel JD, Wallace JM, Planetary-scale atmospheric phenomena associated with the southern oscillation, Mon. Weather Rev. 109, 813-829 (1981). https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2   DOI
22 Hotta H, Rempel M, Yokoyama T, High-resolution calculations of the solar global convection with the reduced speed of sound technique, Astrophys. J. 786, 24 (2014). https://doi.org/10.1088/0004-637X/786/1/24   DOI