• Title/Summary/Keyword: Cosmic ray

Search Result 182, Processing Time 0.026 seconds

Neutron Monitor as a New Instrument for KSWPC

  • Oh, Su-Yeon;Yi, Yu;Kim, Yong-Kyun;Bieber, John W;Cho, Kyung-Seok
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.34.1-34.1
    • /
    • 2008
  • Cosmic ray (CR)s are energetic particles that are found in space and filter through our atmosphere. They are classified with galactic cosmic ray (GCR)s and solar cosmic ray (SCR)s from their origins. The process of a CR particle colliding with particles in our atmosphere and disintegrating into smaller pions, muons, neutrons, and the like, is called a cosmic ray shower. These particles can be measured on the Earth's surface by neutron monitor (NM)s. Regarding with the space weather, there are common types of short term variation called a Forbush decrease (FD) and a Ground Level Enhancement (GLE). In this talk, we will briefly introduce our recent studies on CRs observed by NM: (1) simultaneity of FD depending on solar wind interaction, (2) an association between GLE and solar proton events, and (3) diurnal variation of the GCR depending on geomagnetic cutoff rigidity. NM will provide a crucial information for the Korea Space Weather Prediction Center (KSWPC).

  • PDF

A merging framework for improving field scale root-zone soil moisture measurement with Cosmic-ray neutron probe over Korean Peninsula

  • Nguyen, Hoang Hai;Choi, Minha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.154-154
    • /
    • 2019
  • Characterization of reliable field-scale root-zone soil moisture (RZSM) variability contribute to effective hydro-meterological monitoring. Although a promising cosmic-ray neutron probe (CRNP) holds the pontential for field-scale RZSM measurement, it is often restricted at deeper depths due to the non-unique sensitivity of CRNP-measured fast neutron signal to other hydrogen pools. In this study, a merging framework relied on coupling cosmic-ray soil moisture with a representative additional RZSM, was introduced to scale shallower CRNP effective depth to represent root-zone layer. We tested our proposed framework over a densely vegetated region in South Korea covering a network of one CRNP and nine in-situ point measurements. In particular, cosmic-ray soil moisture and ancillary RZSM retrieved from the most time stable location were considered as input datasets; whereas the remaining point locations were used to generate a reference RZSM product. The errors between these two input datasets and the reference were forecasted by a linear autoregressive model. A linear combination of forecasts was then employed to compute a suitable weight for merging two input products from the predicted errors. The performance of merging framework was evaluated against reference RZSM in comparison to the two original products and a commonly used exponential filter technique. The results of this study showed that merging framework outperformed other products, demonstrating its robustness in improving field-scale RZSM. Moreover, a strong relationship between the quality of input data and the performance merging framework in light of CRNP effective depth variation has been also underlined via the merging framework.

  • PDF

Preliminary Study of Cosmic-ray Shielding Material Design Using Monte-Carlo Radiation Transport Code (몬테카를로 방사선 수송 모델을 활용한 우주방사선 차폐체 설계 관련 선행연구)

  • Kang, Chang-Woo;Kim, Yeong-Chan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.527-536
    • /
    • 2022
  • The radiation shielding characteristic of neutron shielding material has been studied as the preliminary study in order to design cosmic-ray shielding material. Specially, Soft Magnetic Material, known to be effective in EMP and radiation shielding, has been investigated to check if the material would be applicable to cosmic-ray shielding. In this work, thermal neutron shielding experiment was conducted and the Monte Carlo N-Particle(MCNP) was applied to employ skymap.dat, which is cosmic-ray data embedded in MCNP. As a result, polyethylene, borated polyethylene, and carbon nano tube, containing carbon or hydrogen, have been found to be effective in reduction of neutron flux below 20 MeV (including thermal, epithermal, evaporation). In contrast, the materials composed of iron such as SS316 and Soft Magnetic Material show a good shielding performance in the cascade energy range (above 20 MeV). Since Soft Magnetic Material is consisting of 13% of boron, it can also decrease thermal neutron flux, so it is expected that it would show a significant reduction on the entire range of neutron energy if the Soft Magnetic Material is used with hydrogen and carbon, so called low Z material.

Genetic Relationship of Mono-cotyledonous Model Plant by Ionizing Irradiation (단자엽 모델 식물의 방사선원 별 처리에 따른 유전적 다형성 분석)

  • Song, Mira;Kim, Sun-Hee;Jang, Duk-Soo;Kang, Si-Yong;Kim, Jin-Baek;Kim, Sang Hoon;Ha, Bo-Keun;Kim, Dong Sub
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.23-29
    • /
    • 2012
  • In this study, we investigated the genetic variation in the general of monocot model plant (rice) in response to various ionizing irradiations including gamma-ray, ion beam and cosmic-ray. The non-irradiated and three irradiated (200 Gy of gamma-ray and 40 Gy of ion beam and cosmic-ray) plants were analyzed by AFLP technique using capillary electrophoresis with ABI3130xl genetic analyzer. The 29 primer combinations tested produced polymorphism results showing a total of 2,238 bands with fragments sizes ranged from 30 bp to 600 bp. The number of polymorphism generated by each primer combinations was varied significantly, ranging from 2 (M-CAC/E-ACG) to 158 (M-CAT/E-AGG) with an average of 77 bands. Polymorphic peaks were detected as 1,269 with an average of 44 per primer combinations. By UPGMA (Unweighted Pair Group Method using Arithmetic clustering) analysis method, the clusters were divided into non-irradiated sample and three irradiated samples at a similarity coefficient of 0.41 and three irradiation samples was subdivided into cosmic-ray and two irradiation samples (200 Gy of gamma-ray and 40 Gy of ion beam) at similarity coefficient of 0.48. Similarity coefficient values ranged from 0.41 to 0.55.

Cosmological shocks and the cosmic gamma-ray background

  • Ma, Renyi;Ryu, Dong-Su;Kang, Hye-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.83.2-83.2
    • /
    • 2010
  • During the formation of cosmic web, collisionless shock waves are produced around and inside the substructures. In these shock waves electrons and ions are accelerated to such high energies that they can produce gamma rays in several ways. Many authors have studied the contribution of shock-induced radiation to the cosmic gamma-ray background. However not all the important physical processes are included in their calculation. By considering more complete physical process, we re-investigate the problem. In our model, the energy distribution of the cosmic rays (CRs) are calculated by widely accepted diffusive shock acceleration model, both primary and secondary CR electrons are included, both inverse Compton scattering and bremsstrahlung process are considered. The difference of the results are discussed.

  • PDF

COSMIC RAY ACCELERATION AT BLAST WAVES FROM TYPE Ia SUPERNOVAE

  • Kang, Hye-Sung
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.4
    • /
    • pp.95-105
    • /
    • 2006
  • We have calculated the cosmic ray(CR) acceleration at young remnants from Type Ia supernovae expanding into a uniform interstellar medium(ISM). Adopting quasi-parallel magnetic fields, gasdynamic equations and the diffusion convection equation for the particle distribution function are solved in a comoving spherical grid which expands with the shock. Bohm-type diffusion due to self-excited $Alfv\acute{e}n$ waves, drift and dissipation of these waves in the precursor and thermal leakage injection were included. With magnetic fields amplified by the CR streaming instability, the particle energy can reach up to $10^{16}Z$ eV at young supernova remnants(SNRs) of several thousand years old. The fraction of the explosion energy transferred to the CR component asymptotes to 40-50 % by that time. For a typical SNR in a warm ISM, the accelerated CR energy spectrum should exhibit a concave curvature with the power-law slope flattening from 2 to 1.6 at $E{\gtrsim}0.1$ TeV.

Strong Accretion Shock Waves in Cluster Outskirts and Possibility of Cosmic-Ray Population Inversion

  • Hong, Sungwook E.;Ryu, Dongsu;Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.72.2-72.2
    • /
    • 2012
  • We analyzed the properties of shock waves in galaxy clusters, by using the data of simulations for the large-scale structure of the universe with the spatial resolution of up to 25 kpc/h. In a substantial fraction of clusters, we found that strong shocks with Mach number of several or larger exist in outskirts within the virial radius. They are produced by the accretion of warm gas flowing from filaments to clusters, and generate large cosmic-ray fluxes. The cosmic rays advect into cluster cores, but may temporally induce the population inversion, that is, larger population at larger radius, suggested by recent radio and ${\gamma}$-ray observations.

  • PDF

THE QUEST FOR COSMIC RAY PROTONS IN GALAXY CLUSTERS

  • PFROMMER C.;ENSSLIN T. A.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.455-460
    • /
    • 2004
  • There have been many speculations about the presence of cosmic ray protons (CRps) in galaxy clusters over the past two decades. However, no direct evidence such as the characteristic $\gamma$-ray signature of decaying pions has been found so far. These pions would be a direct tracer of hadronic CRp interactions with the ambient thermal gas also yielding observable synchrotron and inverse Compton emission by additionally produced secondary electrons. The obvious question concerns the type of galaxy clusters most likely to yield a signal: Particularly suited sites should be cluster cooling cores due to their high gas and magnetic energy densities. We studied a nearby sample of clusters evincing cooling cores in order to place stringent limits on the cluster CRp population by using non-detections of EGRET. In this context, we examined the possibility of a hadronic origin of Coma-sized radio halos as well as radio mini-halos. Especially for mini-halos, strong clues are provided by the very plausible small amount of required CRp energy density and a matching radio profile. Introducing the hadronic minimum energy criterion, we show that the energetically favored CRp energy density is constrained to $2\%{\pm}1\%$ of the thermal energy density in Perseus. We also studied the CRp population within the cooling core region of Virgo using the TeV $\gamma$-ray detection of M 87 by HEGRA. Both the expected radial $\gamma$-ray profile and the required amount of CRp support this hadronic scenario.

A cosmic ray muons tomography system with triangular bar plastic scintillator detectors and improved 3D image reconstruction algorithm: A simulation study

  • Yanwei Zhao;Xujia Luo;Kemian Qin;Guorui Liu;Daiyuan Chen;R.S. Augusto;Weixiong Zhang;Xiaogang Luo;Chunxian Liu;Juntao Liu;Zhiyi Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.681-689
    • /
    • 2023
  • Purpose: Muons are characterized by a strong penetrating ability and can travel through thousands of meters of rock, making them ideal to image large volumes and substances typically impenetrable to, for example, electrons and photons. The feasibility of 3D image reconstruction and material identification based on a cosmic ray muons tomography (MT) system with triangular bar plastic scintillator detectors has been verified in this paper. Our prototype shows potential application value and the authors wish to apply this prototype system to 3D imaging. In addition, an MT experiment with the same detector system is also in progress. Methods: A simulation based on GEANT4 was developed to study cosmic ray muons' physical processes and motion trails. The yield and transportation of optical photons scintillated in each triangular bar of the detector system were reproduced. An image reconstruction algorithm and correction method based on muon scattering, which differs from the conventional PoCA algorithm, has been developed based on simulation data and verified by experimental data. Results: According to the simulation result, the detector system's position resolution is below 1 ~ mm in simulation and 2 mm in the experiment. A relatively legible 3D image of lead bricks in size of 20 cm × 5 cm × 10 cm used our inversion algorithm can be presented below 1× 104 effective events, which takes 16 h of acquisition time experimentally. Conclusion: The proposed method is a potential candidate to monitor the cosmic ray MT accurately. Monte Carlo simulations have been performed to discuss the application of the detector and the simulation results have indicated that the detector can be used in cosmic ray MT. The cosmic ray MT experiment is currently underway. Furthermore, the proposal also has the potential to scan the earth, buildings, and other structures of interest including for instance computerized imaging in an archaeological framework.