• 제목/요약/키워드: Cosine similarity

검색결과 189건 처리시간 0.025초

지도 학습한 시계열적 특징 추출 모델과 LSTM을 활용한 딥페이크 판별 방법 (Deepfake Detection using Supervised Temporal Feature Extraction model and LSTM)

  • 이정환;김재훈;윤기중
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.91-94
    • /
    • 2021
  • As deep learning technologies becoming developed, realistic fake videos synthesized by deep learning models called "Deepfake" videos became even more difficult to distinguish from original videos. As fake news or Deepfake blackmailing are causing confusion and serious problems, this paper suggests a novel model detecting Deepfake videos. We chose Residual Convolutional Neural Network (Resnet50) as an extraction model and Long Short-Term Memory (LSTM) which is a form of Recurrent Neural Network (RNN) as a classification model. We adopted cosine similarity with hinge loss to train our extraction model in embedding the features of Deepfake and original video. The result in this paper demonstrates that temporal features in the videos are essential for detecting Deepfake videos.

  • PDF

코사인 유사도 측정을 통한 행위 기반 인증 연구 (Behavior-based Authentication Study By Measuring Cosine Similarity)

  • 길선웅
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.165-168
    • /
    • 2020
  • 사용자 행위 기반 인증 기술은 다른 인증 기술들에 비해서 인증의 인식률을 높이는데 많은 데이터의 장기간 추출이 필요하다. 본 논문은 터치 센서와 자이로스코프를 이용하여 그동안의 행위 기반 인증 연구에서 사용 되었던 행위 특정 데이터들 중에서 핵심적인 최소한의 데이터들만을 사용하였다. 측정한 데이터들의 검증에는 그간 사용자 행위 기반 인증 연구에서 이용되지 않고 문서 검색의 유사도 측정에 사용되었던 코사인 유사도를 사용하였다. 이를 통해 최소한의 특정 데이터와 기준이 되는 데이터의 코사인 유사도 비교 검증만을 통해서도 인증 범위에 적용되는 임계값을 조절하는 방식을 동해서 최초 EER 37.637%에서 최종 EER 1.897%의 높은 검증 성능을 증명하는데 성공하였다.

코사인 유사도 분석을 이용한 최저가 매칭 서비스 (The Lowest Price Matching Service Using Cosine Similarity Analysis)

  • 유송은;강병오;김지민;이강혁;이민우;고석주
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.624-629
    • /
    • 2020
  • 최근 온라인 쇼핑 시장이 커지면서 소비자들은 다양한 물건을 온라인에서 쉽게 접근하고 구매할 수 있게 되었다. 이와 함께 인터파크의 '톡집사', 네이버 쇼핑 등에서는 다양한 쇼핑몰의 가격 정보를 모아서 소비자들이 합리적인 가격에 상품을 구매할 수 있도록 도와주고 있다. 이에 본 논문에서는 이러한 가격 비교 시스템을 활용하여 판매자들을 대상으로 서비스하는 시스템을 제안한다. 문서 유사도를 비교하기 위하여 쓰이던 코사인 유사도 분석 기법을 쇼핑몰 상품명 분석에 이용할 수 있도록 한다. 실제 상품명 정보를 이용해 코사인 유사도 분석을 실행하고 코사인 유사도 분석 결괏값으로 관련성이 낮은 상품을 배제한다. 나머지 상품의 정보를 바탕으로 최저가 분석을 수행하여 적정 판매가격을 추출하여 제시한다. 따라서 제안하는 방식을 적용하여 상품 분석을 시행하면 비슷한 범주에 있는 상품들을 추출한 뒤 최적의 가격을 제시할 수 있을 것이다.

  • PDF

MediaPipe를 활용한 춤동작 가이드 시스템 (Dance Movement Guide System using MediaPipe)

  • 김현서;정재영;문미경
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.355-356
    • /
    • 2023
  • K-POP의 가파른 성장세에 따라 댄스 콘텐츠 산업이 확산되는 추세이다. 최근 SNS의 보급이 증가하면서 자신의 댄스 영상을 촬영하고 공유하기도 한다. 그러나 초보자들은 자신의 동작이 어떻게 보이는지 평가하는 데 어려움을 겪어 춤동작을 습득하기 쉽지 않다. 본 논문에서는 MediaPipe를 활용하여 안무 영상과 사용자의 춤영상을 비교하고 올바르게 동작을 따라 하고 있는지 검출해 주는 시스템에 대해 기술한다. 본 시스템을 통해 사용자의 춤동작에 대한 피드백을 받을 수 있으며 초보자들도 정확한 춤동작을 연습할 수 있을 것으로 기대한다.

  • PDF

AI 기반 취업 전망 예측 및 지능형 기업 추천시스템 (AI-based Employment Prospects Assessment and Customized Company Recommendation System)

  • 전지영;유헌창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.669-671
    • /
    • 2023
  • 정보 폭증으로 인한 정보 필터링 어려움을 해결하기 위한 추천 시스템의 중요성이 강조되고 있다. 특히 취업 구직자가 어떤 기업에 지원해야 하는지 혼란스러워하는 문제가 증가하고 있다. 이에 본 연구에서는 교육 기관에 등록된 학생 데이터를 활용하여 각 개인에게 적합한 기업을 추천해주는 맞춤형 기업 추천 시스템을 제안하고자 한다. 다양한 유사도 함수를 적용하여 비교한 결과, 코사인 유사도(Cosine similarity)를 활용한 추천 시스템이 가장 높은 정확도를 보였으며, 이러한 연구는 취업 관련 결정을 지원하는 데 중요한 역할을 할 것으로 기대된다.

새로운 시간축 정규화 방법을 이용한 한국어 고립단어 인식기 (Korean isolated word recognizer using new time alignment method of speech signal)

  • 남명우;박규홍;노승용
    • 대한전자공학회논문지SP
    • /
    • 제38권5호
    • /
    • pp.567-575
    • /
    • 2001
  • 본 논문에서는 음성신호의 발성길이와 상관없이 일정한 크기의 파라미터를 얻을 수 있는 새로운 방법을 제안하였다. 음성인식기의 성능은 음성신호에서 추출된 파라미터간의 유사도(패턴간의 거리)를 어떻게 비교하는지에 따라 결정된다. 그러나 화자에 따른 음성신호의 변이나 발성속도의 차이는 음성신호에서 일정한 크기의 파라미터 추출을 어렵게 한다. 제안한 방법은 음성신호에서 얻어진 파라미터를 스펙토그램의 형태로 표현한 뒤 2차원 DCT(Discrete Cosine Transform)를 이용해 일정한 크기의 파라미터로 정규화시키는 방법이다. 제안한 방법의 유효성을 입증하기 위해 청각세포를 모델링한 32개의 대역통과 필터로부터 얻어진 음성신호의 파라미터를 2차원 DCT 방법으로 가공한 후, 신경 회로망의 입력으로 사용하였다. 또한 기존 방법과의 인식률 비교를 위해 기존의 정규화된 입력을 구하는 방법 중 하나를 선택하여 비교 실험을 수행하였다. 실험결과 제안한 방법은 기존 방법에 비해 화자종속 및 화자독립 고립단어 인식에서 더 높은 인식률과 빠른 인식속도를 얻을 수 있었다.

  • PDF

초분광 영상의 표적신호 분리에 의한 Matched Filter의 표적물질 탐지 성능 향상 연구 (Study on Improving Hyperspectral Target Detection by Target Signal Exclusion in Matched Filtering)

  • 김광은
    • 대한원격탐사학회지
    • /
    • 제31권5호
    • /
    • pp.433-440
    • /
    • 2015
  • 본 연구에서는 초분광영상을 이용한 표적탐지에 있어 배경 신호 특징에 포함되는 표적 신호가 탐지성능에 미치는 영향을 살펴보고, 분광각을 기준으로 표적과 유사한 분광반사 특성을 가지는 화소들을 배경 특징화 과정에서 제외함으로써 표적탐지 성능을 향상시킬 수 있는 방법을 제안하였다. 초분광 표적탐지를 위해 가장 흔히 이용되는 matched Filter와 adaptive cosine estimator 기법에 대해 실제 항공 초분광영상 자료와 여기에 인공표적을 삽입하여 생성한 모의 자료를 이용한 실험 결과, 배경 특징화를 위한 공분산행렬 계산 시 표적 스펙트럼과 유사도가 높은 표적 유사화소들을 제외함으로써 탐지 성능이 크게 향상될 수 있음이 확인되었다. 분광각외에 다양한 유사도 판정 기준들에 대한 적용성 연구와 함께, 제외되는 표적 유사화소들의 양이 최적으로 결정될 수 있는 방법에 대한 추가 연구가 이루어진다면 사용이 간편하고 성능이 우수한 초분광 표적탐지 기법으로 활용될 수 있을 것으로 기대된다.

개혁신학과 복음주의에 관한 계량서지학적 비교 연구 (A Comparative Study using Bibliometric Analysis Method on the Reformed Theology and Evangelicalism)

  • 유영준;이재윤
    • 한국비블리아학회지
    • /
    • 제29권3호
    • /
    • pp.41-63
    • /
    • 2018
  • 이 연구에서는 개혁신학과 복음주의, 중립적인 신학적 입장을 가지는 학술지와 색인어, 저자를 대상으로 계량서지학적 분석 방법을 적용하였다. 구체적인 분석방법은 평균 연결 군집화, 이웃중심성 척도, 프로파일 코사인 유사도를 활용하여 세 가지 결과를 제시하였다. 특히 저자 간 관계를 분석할 때에는 저자 사이에 핵심 공유 색인어를 파악해서 연구 주제를 해석하는 새로운 시도를 해보았다. 학술지 분석에서는 9개 학술지가 크게 개혁신학과 복음주의의 두 개 군집으로 나뉘어졌지만, 개혁신학을 지향하는 장로교단 학술지인 장신논단만 복음주의 군집에 속하였다. 두 군집의 색인어 분석에서도 개혁신학과 복음주의가 두 군집을 대표하는 주요어로 나타났다. 저자 분석에서는 9개의 군집이 산출되었다. 이중에서 4개의 군집에는 주로 개혁신학을 연구하는 장로교단 신학자들이 포함되었으며, 5개 군집에는 장로교단에 소속되지 않은 신학자들이 주로 포함되었다. 따라서 학술지와 색인어, 저자에 대한 계량서지학적 분석 모두에서 일관되게 개혁신학 군집과 복음주의 군집을 도출하였다.

LDA와 BERTopic을 이용한 토픽모델링의 증강과 확장 기법 연구 (Topic Model Augmentation and Extension Method using LDA and BERTopic)

  • 김선욱;양기덕
    • 정보관리학회지
    • /
    • 제39권3호
    • /
    • pp.99-132
    • /
    • 2022
  • 본 연구의 목적은 LDA 토픽모델링 결과와 BERTopic 토픽모델링 결과를 합성하는 방법론인 Augmented and Extended Topics(AET)를 제안하고, 이를 사용해 문헌정보학 분야의 연구주제를 분석하는 데 있다. AET의 실제 적용결과를 확인하기 위해 2001년 1월부터 2021년 10월까지의 Web of Science 내 문헌정보학 학술지 85종에 게재된 학술논문 서지 데이터 55,442건을 분석하였다. AET는 서로 다른 토픽모델링 결과의 관계를 WORD2VEC 기반 코사인 유사도 매트릭스로 구축하고, 매트릭스 내 의미적 관계가 유효한 범위 내에서 매트릭스 재정렬 및 분할 과정을 반복해 증강토픽(Augmented Topics, 이하 AT)을 추출한 뒤, 나머지 영역에서 코사인 유사도 평균값 순위와 BERTopic 토픽 규모 순위에 대한 조화평균을 통해 확장토픽(Extended Topics, 이하 ET)을 결정한다. 최적 표준으로 도출된 LDA 토픽모델링 결과와 AET 결과를 비교한 결과, AT는 LDA 토픽모델링 토픽을 한층 더 구체화하고 세분화하였으며 ET는 유효한 토픽을 발견하였다. AT(Augmented Topics)의 성능은 LDA 이상이었으며 ET(Extended Topics)는 일부 경우를 제외하고 대부분 LDA와 유사한 수준의 성능을 나타내었다.

문서 중요도를 고려한 토픽 기반의 논문 교정자 매칭 방법론 (A Proofreader Matching Method Based on Topic Modeling Using the Importance of Documents)

  • 손연빈;안현태;최예림
    • 인터넷정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.27-33
    • /
    • 2018
  • 최근 국내외 연구기관에서는 논문을 저널에 제출하는 과정에서 연구결과를 효과적으로 전달하기 위해 외부 기관을 통해 논문의 문맥, 전문 용어의 쓰임, 스타일 등에 대한 논문 교정을 진행하는 경우가 증가하고 있다. 하지만 대다수의 논문 교정 회사에서는 매니저의 주관적 판단에 따라 수동으로 논문 교정자를 할당하는 시스템이며, 이에 따라 논문의 주제에 대한 전문성이 부족한 교정자를 할당하여 논문 교정 의뢰인의 만족도가 떨어지는 사례가 발생하고 있다. 따라서 본 논문에서는 효과적인 논문 교정자 할당을 위해 논문의 토픽을 고려한 논문 교정자 매칭 방법론을 제안한다. Latent Dirichlet Allocation을 이용하여 문서의 토픽 모델링을 진행하고, 그 결과를 이용하여 코사인 유사도 기반으로 사용자간 유사도를 계산하였다. 특히, 논문 교정자의 토픽 모델링 과정에서, 대표 문서로 간주되는 문서의 중요도에 따라 가중치를 부여하여 빈도수에 차별을 둬 정밀한 토픽 추정을 가능하게 한다. 실제 서비스의 데이터를 이용한 실험에서 제안 방법론의 성능이 비교 방법론보다 우수함을 확인하였으며, 정성적 평가를 통해 논문 교정자 매칭 결과의 유효성을 검증하였다.