As deep learning technologies becoming developed, realistic fake videos synthesized by deep learning models called "Deepfake" videos became even more difficult to distinguish from original videos. As fake news or Deepfake blackmailing are causing confusion and serious problems, this paper suggests a novel model detecting Deepfake videos. We chose Residual Convolutional Neural Network (Resnet50) as an extraction model and Long Short-Term Memory (LSTM) which is a form of Recurrent Neural Network (RNN) as a classification model. We adopted cosine similarity with hinge loss to train our extraction model in embedding the features of Deepfake and original video. The result in this paper demonstrates that temporal features in the videos are essential for detecting Deepfake videos.
사용자 행위 기반 인증 기술은 다른 인증 기술들에 비해서 인증의 인식률을 높이는데 많은 데이터의 장기간 추출이 필요하다. 본 논문은 터치 센서와 자이로스코프를 이용하여 그동안의 행위 기반 인증 연구에서 사용 되었던 행위 특정 데이터들 중에서 핵심적인 최소한의 데이터들만을 사용하였다. 측정한 데이터들의 검증에는 그간 사용자 행위 기반 인증 연구에서 이용되지 않고 문서 검색의 유사도 측정에 사용되었던 코사인 유사도를 사용하였다. 이를 통해 최소한의 특정 데이터와 기준이 되는 데이터의 코사인 유사도 비교 검증만을 통해서도 인증 범위에 적용되는 임계값을 조절하는 방식을 동해서 최초 EER 37.637%에서 최종 EER 1.897%의 높은 검증 성능을 증명하는데 성공하였다.
최근 온라인 쇼핑 시장이 커지면서 소비자들은 다양한 물건을 온라인에서 쉽게 접근하고 구매할 수 있게 되었다. 이와 함께 인터파크의 '톡집사', 네이버 쇼핑 등에서는 다양한 쇼핑몰의 가격 정보를 모아서 소비자들이 합리적인 가격에 상품을 구매할 수 있도록 도와주고 있다. 이에 본 논문에서는 이러한 가격 비교 시스템을 활용하여 판매자들을 대상으로 서비스하는 시스템을 제안한다. 문서 유사도를 비교하기 위하여 쓰이던 코사인 유사도 분석 기법을 쇼핑몰 상품명 분석에 이용할 수 있도록 한다. 실제 상품명 정보를 이용해 코사인 유사도 분석을 실행하고 코사인 유사도 분석 결괏값으로 관련성이 낮은 상품을 배제한다. 나머지 상품의 정보를 바탕으로 최저가 분석을 수행하여 적정 판매가격을 추출하여 제시한다. 따라서 제안하는 방식을 적용하여 상품 분석을 시행하면 비슷한 범주에 있는 상품들을 추출한 뒤 최적의 가격을 제시할 수 있을 것이다.
K-POP의 가파른 성장세에 따라 댄스 콘텐츠 산업이 확산되는 추세이다. 최근 SNS의 보급이 증가하면서 자신의 댄스 영상을 촬영하고 공유하기도 한다. 그러나 초보자들은 자신의 동작이 어떻게 보이는지 평가하는 데 어려움을 겪어 춤동작을 습득하기 쉽지 않다. 본 논문에서는 MediaPipe를 활용하여 안무 영상과 사용자의 춤영상을 비교하고 올바르게 동작을 따라 하고 있는지 검출해 주는 시스템에 대해 기술한다. 본 시스템을 통해 사용자의 춤동작에 대한 피드백을 받을 수 있으며 초보자들도 정확한 춤동작을 연습할 수 있을 것으로 기대한다.
정보 폭증으로 인한 정보 필터링 어려움을 해결하기 위한 추천 시스템의 중요성이 강조되고 있다. 특히 취업 구직자가 어떤 기업에 지원해야 하는지 혼란스러워하는 문제가 증가하고 있다. 이에 본 연구에서는 교육 기관에 등록된 학생 데이터를 활용하여 각 개인에게 적합한 기업을 추천해주는 맞춤형 기업 추천 시스템을 제안하고자 한다. 다양한 유사도 함수를 적용하여 비교한 결과, 코사인 유사도(Cosine similarity)를 활용한 추천 시스템이 가장 높은 정확도를 보였으며, 이러한 연구는 취업 관련 결정을 지원하는 데 중요한 역할을 할 것으로 기대된다.
본 논문에서는 음성신호의 발성길이와 상관없이 일정한 크기의 파라미터를 얻을 수 있는 새로운 방법을 제안하였다. 음성인식기의 성능은 음성신호에서 추출된 파라미터간의 유사도(패턴간의 거리)를 어떻게 비교하는지에 따라 결정된다. 그러나 화자에 따른 음성신호의 변이나 발성속도의 차이는 음성신호에서 일정한 크기의 파라미터 추출을 어렵게 한다. 제안한 방법은 음성신호에서 얻어진 파라미터를 스펙토그램의 형태로 표현한 뒤 2차원 DCT(Discrete Cosine Transform)를 이용해 일정한 크기의 파라미터로 정규화시키는 방법이다. 제안한 방법의 유효성을 입증하기 위해 청각세포를 모델링한 32개의 대역통과 필터로부터 얻어진 음성신호의 파라미터를 2차원 DCT 방법으로 가공한 후, 신경 회로망의 입력으로 사용하였다. 또한 기존 방법과의 인식률 비교를 위해 기존의 정규화된 입력을 구하는 방법 중 하나를 선택하여 비교 실험을 수행하였다. 실험결과 제안한 방법은 기존 방법에 비해 화자종속 및 화자독립 고립단어 인식에서 더 높은 인식률과 빠른 인식속도를 얻을 수 있었다.
본 연구에서는 초분광영상을 이용한 표적탐지에 있어 배경 신호 특징에 포함되는 표적 신호가 탐지성능에 미치는 영향을 살펴보고, 분광각을 기준으로 표적과 유사한 분광반사 특성을 가지는 화소들을 배경 특징화 과정에서 제외함으로써 표적탐지 성능을 향상시킬 수 있는 방법을 제안하였다. 초분광 표적탐지를 위해 가장 흔히 이용되는 matched Filter와 adaptive cosine estimator 기법에 대해 실제 항공 초분광영상 자료와 여기에 인공표적을 삽입하여 생성한 모의 자료를 이용한 실험 결과, 배경 특징화를 위한 공분산행렬 계산 시 표적 스펙트럼과 유사도가 높은 표적 유사화소들을 제외함으로써 탐지 성능이 크게 향상될 수 있음이 확인되었다. 분광각외에 다양한 유사도 판정 기준들에 대한 적용성 연구와 함께, 제외되는 표적 유사화소들의 양이 최적으로 결정될 수 있는 방법에 대한 추가 연구가 이루어진다면 사용이 간편하고 성능이 우수한 초분광 표적탐지 기법으로 활용될 수 있을 것으로 기대된다.
이 연구에서는 개혁신학과 복음주의, 중립적인 신학적 입장을 가지는 학술지와 색인어, 저자를 대상으로 계량서지학적 분석 방법을 적용하였다. 구체적인 분석방법은 평균 연결 군집화, 이웃중심성 척도, 프로파일 코사인 유사도를 활용하여 세 가지 결과를 제시하였다. 특히 저자 간 관계를 분석할 때에는 저자 사이에 핵심 공유 색인어를 파악해서 연구 주제를 해석하는 새로운 시도를 해보았다. 학술지 분석에서는 9개 학술지가 크게 개혁신학과 복음주의의 두 개 군집으로 나뉘어졌지만, 개혁신학을 지향하는 장로교단 학술지인 장신논단만 복음주의 군집에 속하였다. 두 군집의 색인어 분석에서도 개혁신학과 복음주의가 두 군집을 대표하는 주요어로 나타났다. 저자 분석에서는 9개의 군집이 산출되었다. 이중에서 4개의 군집에는 주로 개혁신학을 연구하는 장로교단 신학자들이 포함되었으며, 5개 군집에는 장로교단에 소속되지 않은 신학자들이 주로 포함되었다. 따라서 학술지와 색인어, 저자에 대한 계량서지학적 분석 모두에서 일관되게 개혁신학 군집과 복음주의 군집을 도출하였다.
본 연구의 목적은 LDA 토픽모델링 결과와 BERTopic 토픽모델링 결과를 합성하는 방법론인 Augmented and Extended Topics(AET)를 제안하고, 이를 사용해 문헌정보학 분야의 연구주제를 분석하는 데 있다. AET의 실제 적용결과를 확인하기 위해 2001년 1월부터 2021년 10월까지의 Web of Science 내 문헌정보학 학술지 85종에 게재된 학술논문 서지 데이터 55,442건을 분석하였다. AET는 서로 다른 토픽모델링 결과의 관계를 WORD2VEC 기반 코사인 유사도 매트릭스로 구축하고, 매트릭스 내 의미적 관계가 유효한 범위 내에서 매트릭스 재정렬 및 분할 과정을 반복해 증강토픽(Augmented Topics, 이하 AT)을 추출한 뒤, 나머지 영역에서 코사인 유사도 평균값 순위와 BERTopic 토픽 규모 순위에 대한 조화평균을 통해 확장토픽(Extended Topics, 이하 ET)을 결정한다. 최적 표준으로 도출된 LDA 토픽모델링 결과와 AET 결과를 비교한 결과, AT는 LDA 토픽모델링 토픽을 한층 더 구체화하고 세분화하였으며 ET는 유효한 토픽을 발견하였다. AT(Augmented Topics)의 성능은 LDA 이상이었으며 ET(Extended Topics)는 일부 경우를 제외하고 대부분 LDA와 유사한 수준의 성능을 나타내었다.
최근 국내외 연구기관에서는 논문을 저널에 제출하는 과정에서 연구결과를 효과적으로 전달하기 위해 외부 기관을 통해 논문의 문맥, 전문 용어의 쓰임, 스타일 등에 대한 논문 교정을 진행하는 경우가 증가하고 있다. 하지만 대다수의 논문 교정 회사에서는 매니저의 주관적 판단에 따라 수동으로 논문 교정자를 할당하는 시스템이며, 이에 따라 논문의 주제에 대한 전문성이 부족한 교정자를 할당하여 논문 교정 의뢰인의 만족도가 떨어지는 사례가 발생하고 있다. 따라서 본 논문에서는 효과적인 논문 교정자 할당을 위해 논문의 토픽을 고려한 논문 교정자 매칭 방법론을 제안한다. Latent Dirichlet Allocation을 이용하여 문서의 토픽 모델링을 진행하고, 그 결과를 이용하여 코사인 유사도 기반으로 사용자간 유사도를 계산하였다. 특히, 논문 교정자의 토픽 모델링 과정에서, 대표 문서로 간주되는 문서의 중요도에 따라 가중치를 부여하여 빈도수에 차별을 둬 정밀한 토픽 추정을 가능하게 한다. 실제 서비스의 데이터를 이용한 실험에서 제안 방법론의 성능이 비교 방법론보다 우수함을 확인하였으며, 정성적 평가를 통해 논문 교정자 매칭 결과의 유효성을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.