• Title/Summary/Keyword: Corrugated steel structural plate

Search Result 32, Processing Time 0.022 seconds

Analytical model for hybrid RC frame-steel wall systems

  • Mo, Y.L.;Perng, S.F.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.127-139
    • /
    • 2003
  • Reinforced concrete buildings with shearwalls are very efficient to resist earthquake disturbances. In general, reinforced concrete frames are governed by flexure and shearwalls are governed by shear. If a structure included both frames and shearwalls, it is generally governed by shearwalls. However, the ductility of ordinary reinforced concrete is very limited. To improve the ductility, a series of tests on framed shearwalls made of corrugated steel was performed previously and the experimental results were compared with ordinary reinforced concrete frames and shearwalls. It was found that ductility of framed shearwalls could be greatly improved if the thickness of the corrugated steel wall is appropriate to the surrounding reinforced concrete frame. In this paper, an analytical model is developed to predict the horizontal load-displacement relationship of hybrid reinforced concrete frame-steel wall systems according to the analogy of truss models. This analytical model is based on equilibrium and compatibility conditions as well as constitutive laws of corrugated steel. The analytical predictions are compared with the results of tests reported in the previous paper. It is found that proposed analytical model can predict the test results with acceptable accuracy.

Experimental Study on Flexural Structural Performance of Sinusoidal Corrugated Girder (파형 웨브주름 보의 휨성능에 관한 실험적 연구)

  • Kim, Jong Sung;Chae, Il Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.503-511
    • /
    • 2015
  • In long span steel structure, the plate girder reinforced with stiffeners are commonly used. When choosing the cross section with deep depth of girder as well as narrow width, however, out of plane buckling can be a problem due to web slenderness. In an effort to solve this issue, current study determined the applicability of using corrugated web girder with deep depth as bending member, which is generally being utilized in both factory and warehouse nationwide. To accomplish this, we performed the loading test of H-shaped beam with sinusoidal corrugated web. Corrugated web CP-2.3 specimen exhibited 12% less maximal bending strength but CP-3.2 specimen exerted 24% increase in strength compared to plate web P-4.5. this result indicates that corrugated web provides enough strength even with unfavorable width-thickness ratio of plate. And bending as well as shear strength estimated by the Eurocode (EN 1993-1-5) were compared with both bending strength by loading test and shear strength estimated by KBC2009. In case of eurocode, increase in plate thickness did not help in bending performance improvement. moreover, shear performance was sensitive to the thickness of the web folds and the shape of the web plate.

MULTIFACTOR MODELLING IN CONSTRUCTION MANAGEMENT

  • Leszek Janusz;Oleg Kaplinski
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.633-637
    • /
    • 2005
  • The paper presents a multifactor modelling of construction processes. There are three phases of the proposed extended procedure. Tools for these phases from chronometric test to verifying of the assumed model are indicated. Apart from the classic verification activities the method of artificial neural networks has been successfully applied. The paper presents the usage of these tools to model the process of assembly of structural corrugated steel plate structures.

  • PDF

Verification on the Axial and Flexural Plastic Resistance Analysis of Unconfined Corrugate Steel Sheet and Concrete Composite Section (비구속 파형강판 합성단면의 압축 및 휨 소성해석방법에 관한 분석)

  • Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.1-10
    • /
    • 2022
  • For the composite section of corrugated steel sheet and concrete, which is often used in soil structures, a conservative design method based on the ultimate strength state is still applied due to the difficulty of the analysis of compatibility condition. In this study, plastic analysis was performed on the flexural and axial strength of the composite section using two limit state design methods, LRFD and LSD. As a result of the analysis of the experimental results, the LRFD analysis value was interpreted as a conservative results for compressive strength, and it was analyzed that the effect of the concrete compressive strength was greater than the steel ratio of the steel plate. The flexural strength was analyzed to be in good agreement with the experimental results by the LSD analysis. From the parametric analysis on the design variables, the hogging moment, which is affected by the tensile strength of the steel plate, slightly decreased the increasing rate of the strength due to the influence of the bolts connection, but the sagging moment linearly increased according to the increment of steel reinforcement ratio.

Field Measurements of Soil-Steel Bridge (파형강판을 이용한 지중-강판 교량의 시공현장계측)

  • 이종구;김경석;이종화;조성민;김명모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.331-338
    • /
    • 2001
  • The soil-steel bridges which were introduced in Korea recently are widely used instead of underpasses of highway or small bridges. This bridge is a kind of flexible buried conduit which sustain the applied load by the interaction with the backfill soil. The 6.25m din. round soil-steel bridge was instrumented so as to investigate the behavior of load sustenance, The axial forces and moments at the 7 locations around the metallic shell were calculated from the measurement of strains during backfilling. The maximum axial force and moment were compared with those of various design predictions. Finally, the stability of bridge was evaluated.

  • PDF

Dynamic characteristics analysis of CBGSCC bridge with large parameter samples

  • Zhongying He;Yifan Song;Genhui Wang;Penghui Sun
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.237-248
    • /
    • 2024
  • In order to make the dynamic analysis and design of improved composite beam with corrugated steel web (CBGSCC) bridge more efficient and economical, the parametric self-cyclic analysis model (SCAM) was written in Python on Anaconda platform. The SCAM can call ABAQUS finite element software to realize automatic modeling and dynamic analysis. For the CBGSCC bridge, parameters were set according to the general value range of CBGSCC bridge parameters in actual engineering, the SCAM was used to calculate the large sample model generated by parameter coupling, the optimal value range of each parameter was determined, and the sensitivity of the parameters was analyzed. The number of diaphragms effects weakly on the dynamic characteristics. The deck thickness has the greatest influence on frequency, which decreases as the deck thickness increases, and the deck thickness should be 20-25 cm. The vibration frequency increases with the increase of the bottom plate thickness, the web thickness, and the web height, the bottom plate thickness should be 17-23mm, the web thickness should be 13-17 mm, and the web height should be 1.65-1.7 5 m. Web inclination and Skew Angle should not exceed 30°, and the number of diaphragms should be 3-5 pieces. This method can be used as a new method for structural dynamic analysis, and the importance degree and optimal value range of each parameter of CBGSCC bridge can be used as a reference in the design process.

Performance-based Design of 300 m Vertical City "ABENO HARUKAS"

  • Hirakawa, Kiyoaki;Saburi, Kazuhiro;Kushima, Souichirou;Kojima, Kazutaka
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.1
    • /
    • pp.35-48
    • /
    • 2014
  • In designing a 300 meter high skyscraper expected to be the tallest building in Japan, an earthquake-ridden country, we launched on the full-scale performance based design to ensure redundancy and establish new specifications using below new techniques. The following new techniques are applied because the existing techniques/materials are not enough to meet the established design criteria for the large-scale, irregularly-shaped building, and earth-conscious material saving and construction streamlining for reconstructing a station building are also required: ${\bullet}$ High strength materials: Concrete filled steel tube ("CFT") columns made of high-strength concrete and steels; ${\bullet}$ New joint system: Combination of outer diaphragm and aluminium spray jointing; ${\bullet}$ Various dampers including corrugated steel-plate walls, rotational friction dampers, oil dampers, and inverted-pendulum adaptive tuned mass damper (ATMD): Installed as appropriate; and ${\bullet}$ Foundation system: Piled raft foundation, soil cement earth-retaining wall construction, and beer bottle shaped high-strength CFT piles.

Fatigue Behavior of Steel-Concrete Composite Bridge Deck with Perfobond Rib Shear Connector (유공판재형 전단연결재를 갖는 강-콘크리트 합성바닥판의 피로거동에 관한 연구)

  • Kyung, Kab Soo;Lee, Seung Yong;Jeong, Youn Ju;Kwon, Soon Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.71-80
    • /
    • 2010
  • Bridge deck is directly influenced by environment and vehicle load, it is easily damaged so that it requires an appropriate repair and retrofit. Therefore, developing a bridge deck with high durability is necessary in order to minimize the maintenance of bridge deck and use it to its design life. In this study, static test was carried out to evaluate a fatigue capacity of steel-concrete composite deck, which was newly developed by supplementing problems of existing reinforced concrete deck. Based on results from the static test, fatigue load was decided, and fatigue test was conducted under the constant amplitude repeated load. From the fatigue tests, the S-N curve regarding principle structural details of composite deck was made, and characteristics of fatigue behavior was estimated by comparing and evaluating it with fatigue design criteria. In addition, fatigue design guideline was presented. As a result, it is found that each structural details of composite deck proposed by this study, such as upper flange of corrugated steel plate and middle section of it, shear connector and lower flange of corrugated steel plate, is satisfying the fatigue strength.

Experimental Study on Loading Capacity of SY Corrugated Steel Form for RC Beam and Girder (SY 비탈형 보거푸집의 내하성능에 관한 실험적 연구)

  • Bae, Kyu-Woong;Boo, Yoon-Seob;Hwhang, Yoon-Koog;Shin, Sang-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.32-39
    • /
    • 2021
  • Recently, necessities of steel form for reinforced concrete beam and girder have been emphasized in building structures for the reduction of the construction period and the labor cost. SY Beam was developed for the these purposes and is roll-formed using thin steel plate. On this research, we tried to evaluate and verify the performance and behavior of SY Beam under construction loading stage as like pouring in situ concrete. For the standard shape of SY beam, structural modelling with various steel thicknesses has carried out using MIDAS GEN program. From results of modelling, the width and height of SY Beam were determined 600mm and 400mm respectively. For 3 SY Beams, the loading experiment was performed to measure vertical and horizontal displacement under stacking sand, concrete block, and bundle of rebar. As a result, the vertical deflection showed a tendency to decrease as the thickness increased. In the horizontal displacement, the trend according to the thickness was not clearly observed. From the evaluation on the loading experiment, it is considered that the SY Beam can secure both workability and structural safety. In particular, the SY Beam(1.2mm) hardly generates horizontal displacement, so it has excellent load-bearing capacity. So, we judged that the SY Beam with 1.2mm steel plate has excellent performance and consider to be immediately commercially available.

A study on behavior characteristics of liner plate with depth (토피고 변화에 따른 Liner Plate 거동특성에 관한 연구)

  • Jeong, Ji-Su;Ji, Young-Hwan;Cho, Hyun;Hur, In-Young;Lee, Seung-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.2
    • /
    • pp.131-139
    • /
    • 2012
  • In this study, the numerical analysis has been conducted in order to check behavior characteristics of liner plate made of corrugated steel from urban small sized tunnel excavation. The analysis was conducted with five kinds of conditions like 5 m, 10 m, 15 m, 20 m and 25 m to examine the behavior characteristics of liner plate according to the depth of cover. Analysis results showed that the maximum axial stress and the maximum displacement occurs in the lower end of the member, and the maximum shear stress occurs in the upper part of the member. Also, change of displacement, stress shearing stress of liner plate based on various depth of cover are existed, but the difference is slight, and by increasing depth of cover, structural stability is gradually ensured.