• 제목/요약/키워드: Corrugated panel

Search Result 36, Processing Time 0.03 seconds

Probabilistic multi-objective optimization of a corrugated-core sandwich structure

  • Khalkhali, Abolfazl;Sarmadi, Morteza;Khakshournia, Sharif;Jafari, Nariman
    • Geomechanics and Engineering
    • /
    • 제10권6호
    • /
    • pp.709-726
    • /
    • 2016
  • Corrugated-core sandwich panels are prevalent for many applications in industries. The researches performed with the aim of optimization of such structures in the literature have considered a deterministic approach. However, it is believed that deterministic optimum points may lead to high-risk designs instead of optimum ones. In this paper, an effort has been made to provide a reliable and robust design of corrugated-core sandwich structures through stochastic and probabilistic multi-objective optimization approach. The optimization is performed using a coupling between genetic algorithm (GA), Monte Carlo simulation (MCS) and finite element method (FEM). To this aim, Prob. Design module in ANSYS is employed and using a coupling between optimization codes in MATLAB and ANSYS, a connection has been made between numerical results and optimization process. Results in both cases of deterministic and probabilistic multi-objective optimizations are illustrated and compared together to gain a better understanding of the best sandwich panel design by taking into account reliability and robustness. Comparison of results with a similar deterministic optimization study demonstrated better reliability and robustness of optimum point of this study.

종이성형구조물의 휨강성에 대한 실험적 연구 (Experimental Investigation for Flexural Stiffness of Paperboard-stacked Structure)

  • 박종민;이명훈
    • 한국포장학회지
    • /
    • 제5권2호
    • /
    • pp.17-23
    • /
    • 1999
  • Top-to-bottom compression strength of corrugated fiberboard boxes is partly dependent on the load-carrying ability of the central panel areas. The ability of these central areas to resist bending under load will increase the stacking strength of the box. The difference of box compression strengths, among boxes which are made with identical dimensions and fabricated with same components but different flute sizes, is primarily due to difference of the flexural stiffness of the box panels. Top-to-bottom compression strength of a box is accurately predicted by flexural stiffness measurements and the edge crush test of the combined boards. This study was rallied out to analyze the flexural stiffness, maximum bending force and maximum deflection for various corrugated fiber-boards by experimental investigation. There were significant differences between the machine direction (MD) and the cross-machine direction (CD) of corrugated fiberboards tested. It was about 50% in SW and DW, and $62%{\sim}74%$ in dual-medium corrugated fiberboards(e.g. DM, DMA and DMB), respectively. There were no significant differences of maximum deflection in machine direction among the tested fiberboards but, in cross direction, DM showed the highest value and followed by SW, DMA, DMB and DW in order. For the corrugated fiberboards tested, flexural stiffness in machine direction is about $29%{\sim}48%$ larger than cross direction, and difference of flexural stiffness between the two direction is the lowest in DMA and DMB.

  • PDF

An empirical formulation to predict maximum deformation of blast wall under explosion

  • Kim, Do Kyun;Ng, William Chin Kuan;Hwang, Oeju
    • Structural Engineering and Mechanics
    • /
    • 제68권2호
    • /
    • pp.237-245
    • /
    • 2018
  • This study proposes an empirical formulation to predict the maximum deformation of offshore blast wall structure that is subjected to impact loading caused by hydrocarbon explosion. The blast wall model is assumed to be supported by a simply-supported boundary condition and corrugated panel is modelled. In total, 1,620 cases of LS-DYNA simulations were conducted to predict the maximum deformation of blast wall, and they were then used as input data for the development of the empirical formulation by regression analysis. Stainless steel was employed as materials and the strain rate effect was also taken into account. For the development of empirical formulation, a wide range of parametric studies were conducted by considering the main design parameters for corrugated panel, such as geometric properties (corrugation angle, breadth, height and thickness) and load profiles (peak pressure and time). In the case of the blast profile, idealised triangular shape is assumed. It is expected that the obtained empirical formulation will be useful for structural designers to predict maximum deformation of blast wall installed in offshore topside structures in the early design stage.

알루미늄 압출판의 동적 거동 예측을 위한 해석적 연구 (Study of dynamic behavior of aluminum extruded panels)

  • 이준헌;김대용;김범수;김관주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.729-733
    • /
    • 2012
  • Frame structures of High speed train are constructed from corrugated panel and aluminum extruded panel, which have high bending stiffness. Transmission loss of those panels, however, is less satisfactory than other panels with same mass per unit area. Therefore, this study predicted transmission loss of aluminum extruded panels using Finite element method. Specifically, we modeled acoustic cavity above a radiation surface and analyzed correlation between T-slot and transmission loss. Moreover, we examined the effect of boundary condition changes of the structure on transmission.

  • PDF

LNG선 화물격납용기 Invar strake edge 이음부 형상 개선에 관한 연구 (A Study on Application of Corrugated Invar Strake Edge in the Membrane Cargo Containment of LNG Carriers)

  • 한종만
    • Journal of Welding and Joining
    • /
    • 제27권5호
    • /
    • pp.74-80
    • /
    • 2009
  • The membrane of the LNG carriers consists of thin strips of INVAR(Fe-36%Ni) steel plates, and the junction between INVAR strips is fabricated by welding. Thousands of the raised edge joints, regularly spaced, are located around all the side of the tank corner near the transverse bulkhead, and TIG welding is manually made on the top of the raised edges. Since the thickness of all the laminated edge plies is extremely thin and the weld position is under a bad accessibility, highly skilled workers are required to perform welding relatively for a long welding time. An alternative scheme for the corner membrane fabrication is proposed in the study to improve the installation workability and thus productivity. The scheme replaces the welded edges with the preformed corrugation ones. A panel strip with regularly-spaced corrugations is installed at the corner instead of the individual flat strip of which edge is vertically raised to be welded with the adjacent strip. In the study, a series of the evaluation on the corrugated edge members was performed to assess the applicability to the real LNG carrier fabrication. Opening displacement at the raised edge was experimentally examined. Elastic stiffness regressed from the displacement was nearly same in both edge types. Edge displacement and local stresses were calculated under hydrostatic pressure and temperature change due to liquefied cargo. Fatigue test was performed on both corrugated and welded edge specimens consisting of two or five plies of invar strips. Fatigue strength of the corrugated specimens was not less than that of the welded specimens.

통기성 상자 구조물에 대한 유한요소 해석 (Finite Element Analysis of a Ventilating Box Structure)

  • 박종민;권순구
    • Journal of Biosystems Engineering
    • /
    • 제27권6호
    • /
    • pp.557-564
    • /
    • 2002
  • Corrugated board is an efficient low-cost structure material fur the boxes that are widely used for transporting, storing and distributing goods. Corrugated board is also considered as an orthotropic because the principal material directions are the same as in paperboard. The purpose of this study was to elucidate the principal design parameters of ventilating box through the FEA on the various types of ventilating hole. From the viewpoint of the stress distribution and stress level, the optimum pattern and location of the ventilating hole were vertically oblong, and symmetry position with a short distance to the right and left from the center of front and rear panel. And, the optimum location and pattern of hand hole were a short distance to the top from the center of both side panels, and modified shape to increase the radius of curvature of both side in horizontal oblong. In general, the optimum pattern and location of both the ventilating hole and hand hole based on the FEM analysis were well verified by experimental investigation. It is suggested that decrease in compressive strength of the box could be minimized in the same ventilating hole area under the condition of the length of major axis of ventilating hole is less than 1/4 of box length, the ratio of minor axis/major axis is 113.5∼l/2.5, and number of the ventilating holes is even and symmetrical.

LNG 저장탱크용 멤브레인의 성형성 평가 (Evaluation on the Formability of Corrugated Membrane panels of a LNG Storage Tank)

  • 박구환;변상규;김성원;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.98-101
    • /
    • 1997
  • Membrane panels for LNG(Liquid Natural Gas) tank are formed to corrugared ones by press forming. The environment of LNG tank is so severe that the service temperature is -162$^{\circ}C$ and the room temperature is 20$^{\circ}C$. The thermal deformation derived by the severe temperature change is absorbed by the corrugations of the membrane panels. In this paper the formability of stainless steel membrane panel is examined by the finite element analysis. Two corrugated shapes are suggested, and analyzed to obtain a sound absorption performance of the thermal distortion. Also the design considers forming characteristics and economy of production.

  • PDF

허니콤재의 투과손실 저하 인자에 대한 고찰 (Considerations on the Factors Reducing the Sound Transmission Loss of the Honeycomb Panels)

  • 김석현;이현우;김정태
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.2185-2190
    • /
    • 2008
  • In a high speed train, multi-layered panels for floor, side wall and roof are important sound insulating part. As these multi-layered panels require high bending strength vs. weight, corrugated steels or aluminium honeycomb panel are generally used. However, with some inevitable factors, these panels show lower sound insulation performance than that of the plate with the same weight. Transmission loss(TL) often severely decreases in a particular frequency range because of the decrease of the critical frequency, occurrence of local resonance modes and cavity resonance modes, which are not shown in a plate. In this study, frequency range and cause of the TL drop are investigated on the corrugated and honeycomb panels.

  • PDF

한국형 고속전철 하니콤 바닥구조의 등가평판모델 및 방사소음평가 (The Floor Structure of Korean High Speed Train : Equivalent Plate Model and Acoustic Power Radiation)

  • 장준호;이상윤;홍성철;이우식;박철희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.398-404
    • /
    • 1998
  • The acoustic power reduction methods of the vibrating structures are valid to design the quite structure. To calculate the acoustic power, the dynamic responses have to be determined. It is not easy to analyse the structure composed of the corrugated panels. Because of the structural complexity and the many analysing times. To make up for these defects, the equivalent orthogonal panel is presented. Also the acoustic power prediction method of the vibrating structures is proposed. As examples, the equivalent material properties of the corrugated plates are obtained and the acoustic powers of the floor structure are calculated at several frequency regions for KHST.

  • PDF

차세대 고속철도 차량용 알루미늄 압출재의 차음 설계 (Sound-Insulation Design of Aluminum Extruded Panel in Next-Generation High-Speed Train)

  • 김석현;서태건;김정태;송달호
    • 대한기계학회논문집A
    • /
    • 제35권5호
    • /
    • pp.567-574
    • /
    • 2011
  • 알미늄 압출재는 고속열차의 경량화를 위하여 기존의 주름강판을 대체하여 널리 사용된다. 알미늄 압출재는 고속열차 적층재 가운데 가장 큰 차음 기여도를 보이나, 동일한 중량의 평판과 비교할 때, 국부공진 주파수 대역에서 투과손실이 크게 떨어진다. 이 연구에서는 차세대 400km/h급 고속철도 차량용 알미늄 압출재를 대상으로 차음 문제를 검토하고, 차음성능의 향상 방안을 제시한다. 코어 구조를 변경시켜 국부공진 대역을 높이고, 우레탄 폼을 코어에 충진시킬 때의 차음성능 향상효과를 실험적으로 확인한다. 최종적으로 제시된 방법이 바닥 적층재의 총 투과손실을 어느 정도 개선시키는가를 평가한다.