• 제목/요약/키워드: Corrugated duct

검색결과 4건 처리시간 0.02초

반복 주름을 갖는 이차원 덕트의 음파차단 해석 (An Analysis of the Sound Stopband in Periodically Corrugated 2-D Ducts)

  • 김현실;김재승;김봉기;김상렬;이성현
    • 한국음향학회지
    • /
    • 제31권1호
    • /
    • pp.11-18
    • /
    • 2012
  • 본 논문은 경계가 주기적으로 변하는 주름관에 음파가 전파할 때 발생하는 차단주파수밴드 (stopband)를 이론 및 BEM으로 해석한 내용을 다루었다. 2-D 덕트를 고려하였으며 경계가 길이방향의 사인함수로 변하는 주름관에서 주름의 크기가 덕트 높이에 비해 충분히 작은 경우 다중 스케일 섭동법 (Multiple Scaling Perturbation Method)을 이용하여 해를 구하였다. 주파수가 복소수가 되는 조건에서 Bragg 공진과 Non-Bragg 공진에서 발생하는 차단주파수밴드의 형성조건을 구하였다. 2-D BEM 해석을 수행하여 주름관의 삽입손실 (Insertion Loss)을 계산하였으며 이론적으로 예측한 차단주파수밴드의 존재를 확인하였다.

해양 구조물용 공조덕트 유동 및 구조해석에 관한 연구 (A Study on the Flow and Structural Analysis in an Air Conditioning Duct for Marine Offshore)

  • 이중섭;이병호;진도훈
    • 한국기계가공학회지
    • /
    • 제18권3호
    • /
    • pp.88-93
    • /
    • 2019
  • This study concerns the distributions of flow in an air conditioning duct used for a marine and oil drilling ship. From the results of carrying out flow analysis and structural analysis of a ventilation duct applied to a marine structure, the following conclusion could be gained. The pressure tended to increase as the flow velocity at the inlet increased and the pressure at the inlet increased. It was recognized that the pressure decreased due to the influence of a corrugated tube when it entered and exited from the duct. As a result of structural analysis, a higher train was generated at the corrugated tube compared with the duct. In addition, in the case of the internal pressure of 0.7MPa, which was the designed load, it was found that there was almost no influence as it was within 0.1mm.

가스터빈용 열교환기의 주름진 덕트에서 종횡비 변화가 열전달 특성에 미치는 영향 (Effects of Duct Aspect Ratio on Heat Transfer in Wavy Duct of Heat Exchanger of Gas Turbine)

  • 김한호;황상동;조형희;최재호;전승배
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.339-344
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics in wavy ducts of primary surface heat exchanger. Experiments using a naphthalene technique are carried out to determine the local transfer characteristics for flow in the corrugated wall duct. The aspect ratios of the rectangular duct cross-section are 7.3, 4.7 and 1.8 with a corrugation angle of $145^{\circ}$. The Reynolds numbers, based on the duct hydraulic diameter, are ranged from 1000 to 5000. The local heat/mass transfer measurement is conducted in the spanwise directions. The results show that Tayler-Gortler vortices exist on the pressure surface. Flow separation on the suction surface appears at a high Reynolds number resulting in a sharp decrease in the local transfer rates, but relatively high transfer rates are obtained in the reattachment region.

  • PDF

열교환기 내부 유로 종횡비 변화에 따른 국소 열/물질전달 특성 고찰 (Effects of Aspect Ratio on Local Heat/Mass Transfer in Wavy Duct)

  • 장인혁;황상동;조형희
    • 설비공학논문집
    • /
    • 제17권6호
    • /
    • pp.569-580
    • /
    • 2005
  • The present study investigates the convective heat/mass transfer characteristics in wavy ducts of a primary surface heat exchanger. The effects of duct aspect ratio and flow velocity on the heat/mass transfer are investigated. Local heat/mass transfer coefficients on the corrugated duct sidewall are determined using a naphthalene sublimation technique. The aspect ratios of the wavy duct are 7.3, 4.7 and 1.8 with the corrugation angle of $145\Omega$. The Reynolds numbers, based on the duct hydraulic diameter, vary from 300 to 3,000. The results show that at the low Re(Re $\leq$ 1000) the secondary vortices called Taylor-Gortler vortices perpendicular to the main flow direction are generated due to effect of duct curvature. By these secondary vortices, non-uniform heat/mass transfer coefficients distributions appear. As the aspect ratio decreases, the number of cells formed by secondary vortices are reduced and secondary vortices and comer vortices mix due to decreased aspect ratio at Re$\leq$1000. At Re >1000, the effects of corner vortices become stronger. The average Sh for the aspect ratio of 7.3 and 4.7 are almost same. But at the small aspect ratio of 1.8, the average Sh decreases due to decreased aspect ratio. More pumping power (pressure loss) is required for the larger aspect ratio due to the higher flow instability.