• Title/Summary/Keyword: Corrugated Steel Web

Search Result 49, Processing Time 0.029 seconds

Space grid analysis method in modelling shear lag of cable-stayed bridge with corrugated steel webs

  • Ma, Ye;Ni, Ying-Sheng;Xu, Dong;Li, Jin-Kai
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.549-559
    • /
    • 2017
  • As few multi-tower single-box multi-cell cable-stayed bridges with corrugated steel webs have been built, analysis is mostly achieved by combining single-girder model, beam grillage model and solid model in support of the design. However, such analysis methods usually suffer from major limitations in terms of the engineering applications: single-girder model fails to account for spatial effect such as shear lag effect of the box girder and the relevant effective girder width and eccentric load coefficient; owing to the approximation in the principle equivalence, the plane grillage model cannot accurately capture shear stress distribution and local stress state in both top and bottom flange of composite box girder; and solid model is difficult to be practically combined with the overall calculation. The usual effective width method fails to provide a uniform and accurate "effective length" (and the codes fail to provide a unified design approach at those circumstance) considering different shear lag effects resulting from dead load, prestress and cable tension in the construction. Therefore, a novel spatial grid model has been developed to account for shear lag effect. The theoretical principle of the proposed spatial grid model has been elaborated along with the relevant illustrations of modeling parameters of composite box girder with corrugated steel webs. Then typical transverse and longitudinal shear lag coefficient distribution pattern at the side-span and mid-span key cross sections have been analyzed and summarized to provide reference for similar bridges. The effectiveness and accuracy of spatial grid analysis methods has been finally validated through a practical cable-stayed bridge.

Analytical Study of Shear Capacity of Trapezoidal Corrugated Web Girders (건축물 적용을 위한 제형 절곡 웨브 보의 전단성능에 관한 해석적 연구)

  • Lee, Seo Haeng;Park, Geun Woo;Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.1
    • /
    • pp.49-58
    • /
    • 2018
  • This study conducted nonlinear finite element analysis to figure out the influence of shear performance on the ${\beta}$ of girders with trapezoidal corrugated web. Through the experiment specimen, analysis model which is highly accurate was verified. Based on this, a parameter analysis was conducted on key variables affecting ${\beta}$. Proposed formulas of previous studies were analyzed using parameter analysis result. Eurocode was designed to be safer than other proposals. Only models that are included in the inelastic area, depending on the Moon's proposal, were satisfied the proposed formulas by Kim to enhance economic design.

Full-scale tests and finite element analysis of arched corrugated steel roof under static loads

  • Wang, X.P.;Jiang, C.R.;Li, G.Q.;Wang, S.Y.
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.339-354
    • /
    • 2007
  • Arched Corrugated Steel Roof (ACSR) is a kind of thin-walled steel shell, composing of arched panels with transverse small corrugations. Four full-scale W666 ACSR samples with 18m and 30m span were tested under full and half span static vertical uniform loads. Displacement, bearing capacities and failure modes of the four samples were measured. The web and bottom flange in ACSR with transverse small corrugations are simplified to anisotropic curved plates, and the equivalent tensile modulus, shear modulus and Poisson's ratio of 18m span ACSR were measured. Two 18 m-span W666 ACSR samples were analyzed with the Finite Element Analysis program ABAQUS. Base on the tests, the limit bearing capacity of ACSR is low, and for half span loading, it is 74-75% compared with the full span loading. When the testing load approached to the limit value, the bottom flange at the sample's bulge place locally buckled first, and then the whole arched roof collapsed suddenly. If the vertical loads apply along the full span, the deformation shape is symmetric, but the overall failure mode is asymmetric. For half span vertical loading, the deformation shape and the overall failure mode of the structure are asymmetric. The ACSR displacement under the vertical loads is large and the structural stiffness is low. There is a little difference between the FEM analysis results and testing data, showing the simplify method of small corrugations in ACSR and the building techniques of FEM models are rational and useful.

Tubular Web Reduced Beam Section (TW-RBS) connection, a numerical and experimental study and result comparison

  • Zahrai, Seyed M.;Mirghaderi, Seyed R.;Saleh, Aboozar
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.571-583
    • /
    • 2017
  • A kind of accordion-web RBS connection, "Tubular Web RBS (TW-RBS)" connection is proposed in this research. TW-RBS is made by replacing a part of web with a tube at the desirable location of the beam plastic hinge. This paper presents first a numerical study under cyclic load using ABAQUS finite element software. A test specimen is used for calibration and comparison of numerical results. Obtained results indicated that TW-RBS would reduce contribution of the beam web to the whole moment strength and creates a ductile fuse far from components of the beam-to-column connection. Besides, TW-RBS connection can increase story drift capacity up to 9% in the case of shallow beams which is much more than those stipulated by the current seismic codes. Furthermore, the tubular web like corrugated sheet can improve both the out-of-plane stiffness of the beam longitudinal axis and the flange stability condition due to the smaller width to thickness ratio of the beam flange in the plastic hinge region. Thus, the tubular web in the plastic hinge region improves lateral-torsional buckling stability of the beam as just local buckling of the beam flange at the center of the reduced section was observed during the tests. Also change of direction of strain in arc shape of the tubular web section is smaller than the accordion webs with sharp corners therefore the tubular web provides a better condition in terms of low-cycle fatigue than other accordion web with sharp corners.

Structural efficiency of various strengthening schemes for cold-formed steel beams: Effect of global imperfections

  • Dar, M. Adil;Subramanian, N.;Dar, A.R.;Majid, Muheeb;Haseeb, Mohd;Tahoor, Mugees
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.393-403
    • /
    • 2019
  • Cold-formed steel (CFS) has a great potential to meet the global challenge of fast-track and durable construction. CFS members undergo large buckling instabilities due to their small wall thickness. CFS beams with corrugated webs have shown great resistance towards web buckling under flexure, when compared to the conventional I-sections. However, the magnitude of global imperfections significantly affects the performance of CFS members. This paper presents the first attempt made to experimentally study the effect of global imperfections on the structural efficiency of various strengthening schemes implemented in CFS beams with corrugated webs. Different strengthening schemes were adopted for two types of beams, one with large global imperfections and the other with small imperfections. Strength and stiffness characteristics of the beams were used to evaluate the structural efficiency of the various strengthening schemes adopted. Six tests were performed with simply supported end conditions, under four-point loading conditions. The load vs. mid-span displacement response, failure loads and modes of failure of the test specimens were investigated. The test results would compensate the lack of experimental data in this area of research and would help in developing numerical models for extensive studies for the development of necessary guidelines on the same. Strengthening schemes assisted in enhancing the member performance significantly, both in terms of strength and stiffness. Hence, providing an economic and time saving solution to such practical structural engineering problems.

Numerical Parametric Analysis of the Ultimate Loading-Capacity of Channel Purlins with Screw-Fastened Sheeting

  • Zhang, Yingying;Xue, Jigang;Song, Xiaoguang;Zhang, Qilin
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1801-1817
    • /
    • 2018
  • This paper presents the numerical parametric analysis on the loading capacity of Channel purlins with screw-fastened sheeting, in which the effects of anti-sag bar and corrugated steel sheet on the ultimate capacity are studied. Results show that the setup of anti-sag bars can reduce the deformations and improve the ultimate capacity of C purlins. The traditional method of setting the anti-sag bars in the middle of the web is favorable. The changing of sheeting type, sheeting thickness and rib spacing has significant effects on the ultimate capacity of C purlins without anti-sag bars, compared with those with anti-sag bars. The proposed design formulas are relatively consistent with the calculations of EN 1993-1-3:2006, which is different from those of GB 50018-2002.

Analysis on Torsional Behavior of PSC Box Girder with Corrugated Steel Web Considering Tensile Strength of Slab (슬래브의 인장강도를 고려한 복부 파형강판 PSC 박스거더의 비틀림 거동 분석)

  • Ko, Hee-Jung;Kim, Hyun-Su;Lee, Hak-Eun
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.41.1-41.1
    • /
    • 2010
  • 복부 파형강판 PSC 박스거더는 상부와 하부에 콘크리트 슬래브를 갖고 있으며, 복부에만 강판이 사용되는 특수한 형태의 교량이다. 해당 형식의 비틀림 거동을 이해하기 위해서는 상, 하부 콘크리트의 비틀림 거동에 대해 먼저 분석한 후, 비틀림에 의한 전단변형률이 거더 단면의 모든 구간에서 동일하다는 적합조건을 이용하여 복부의 비틀림 거동을 이해해야 한다. 기존의 복부 파형강판을 갖는 PSC 박스거더에 대한 연구는 전단거동(Easley, 1969; Elgaaly et al., 1996; 문지호 외, 2004; 이종원 외, 2005) 및 휨 거동(Elgaaly et al., 1997; Abbas et al., 2006, 2007; 문지호 외 2008)에 대하여 수행되어 왔으며, 이러한 연구들은 파형강판 자체에 국한되는 경향이 있다. 특히나 전체 복합거더의 비틀림 거동에 대한 연구는 크게 부족한 상황이며, 기존의 연구(Mo et al., 2000)는 균열 발생 이후의 비틀림 거동에 대해서만 수행되었고, 슬래브가 갖는 인장 강도를 무시하였다. 본 연구에서는 콘크리트의 비틀림 발생 이전과 이후를 모두 예측할 수 있는 방법을 제안하였고, 이를 토대로 시행오차법이 적용된 해석 알고리즘을 제작하였으며, 유한요소해석을 통하여 검증하였다.

  • PDF

Deflection Evaluation of the Constructing-load Carrying Capacity for Deep Decking Floor System Reinforced with Both Ends Cap Plates (캡 플레이트로 단부 보강한 춤이 깊은 데크의 시공중 처짐성능평가)

  • Jeon, Sang Hyun;Kyung, Jae Hwan;Kim, Young Ho;Choi, Sung Mo;Yang, Il Seung
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.155-167
    • /
    • 2015
  • If of application of the deep deckting floor in long span more than 6m, the deflection caused by the construction load occurred high. Because the constructing-works and safety by this deflection, take actually supports to laborers working on the deck. However, installed supports are having difficultly such as the restricted passage, deficiency of working space, and lowering of efficiency. And toward-opening deck is seen as local buckling of web plate, flexural-torsional buckling, and gradually opening of corrugated decking. In this study, we will suggest a deep decking floor system that reinforced with both ends cap plates for toward-opneing decking change from opening to closing. The constructing deflection of a deep decking more than 6m must be satified 30mm and L/180 as proposed. Full-scale field tests loading by sand conducted a deep decking reinforced with and without cap plate. In conclusion, the specimen reinforced with cap plates have shown that to ensure the negative moment $wl^2/18$. And constructing-deflection of deep decking shown that to satisfy the evaluation value (L/180 or 30mm).