• 제목/요약/키워드: Corrosive environment

검색결과 236건 처리시간 0.029초

동(銅)이 주종을 이루는 조형물 보존용 왁스의 산성강하물 및 부식 가스에서의 영향성 연구 (Study on the Effect of Corrosion Gas and Acidic Falling Materials for Conservational Wax on the Copper based Sculpture)

  • 오승준;위광철
    • 보존과학회지
    • /
    • 제26권4호
    • /
    • pp.437-443
    • /
    • 2010
  • 화석 연료의 생성물인 유해 부식 가스와 이들의 원인으로 나타나는 산성 강하물이 야외 동(銅) 조형물을 보호하고 있는 왁스에 미치는 환경에 대한 영향성을 연구하였다. 부식이 유해 가스보다는 체류성이 강한 산성 강하물에 의해 급격히 진행되는 것으로 볼 수 있었으며, 이 부식의 시작이 코팅된 왁스의 백화 현상으로부터 시작되는 것을 알 수 있었다. 산성도가 증가할수록 백화 현상이 크게 발생하였으며 결과적으로 산성강하물 및 부식 가스에 의해 백화 현상의 시작으로 내부 금속의 노출 현상이 나타나게 되어 부식이 진행되는 것으로 알 수 있었다. 왁스가 코팅된 동 시편은 유해 부식 가스와 산성비, 0.1 M의 산들에 노출되었으며 이의 결과로 가장 변화가 적고 산성도에 대한 저항성이 큰 왁스로는 황산의 결과를 제외하고는 모든 실험에서 Renaissance wax의 변화가 가장 작은 것으로 나타났다.

STS304L 및 STS316L 용접부의 응력 부식 균열 개선을 위한 저온 분사 코팅의 잔류 응력 감소 효과에 대한 연구 (A Study on Residual Stress Reduction Effect of Cold Spray Coating to Improve Stress Corrosion Cracking of Stainless Steel 304L and 316L Welds)

  • 박광용;심덕남;하종문;이상동;조성우
    • 한국압력기기공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.102-108
    • /
    • 2023
  • A Chloride-induced stress corrosion cracking (CISCC) of austenite stainless steel in dry cask storage system (DCSS) can occur with extending service time than originally designed. Cold spray coating (CSC) not only form a very dense microstructure that can protect from corrosive environments, but also can generate compressive stress on the surface. This characteristic of CSC process is very helpful to increase the resistance for CISCC. CSC with several powders, such as 304L, 316L and Ni can be optimized to form very dense coating layer. In addition, the impact energy generated as the CSC powder collides with the surface of base metal at a speed of Mach 2 or more can remove the residual tensile stress of welding area and serve the compress stress. CSC layers include no oxidation and no contamination with under 0.2% porosity, which is enough to protect from the penetration of corrosive chloride. Therefore, the CSC coating layer can be accompanied by a function that can be disconnected from the corrosive environment and an effect of improving the residual stress that causes CISCC, so the canister's CISCC resistance can be increased.

Prediction of stress intensity factor range for API 5L grade X65 steel by using GPR and MPMR

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Saravanan, M.;Gandhi, P.
    • Structural Engineering and Mechanics
    • /
    • 제81권5호
    • /
    • pp.565-574
    • /
    • 2022
  • The infrastructures such as offshore, bridges, power plant, oil and gas piping and aircraft operate in a harsh environment during their service life. Structural integrity of engineering components used in these industries is paramount for the reliability and economics of operation. Two regression models based on the concept of Gaussian process regression (GPR) and Minimax probability machine regression (MPMR) were developed to predict stress intensity factor range (𝚫K). Both GPR and MPMR are in the frame work of probability distribution. Models were developed by using the fatigue crack growth data in MATLAB by appropriately modifying the tools. Fatigue crack growth experiments were carried out on Eccentrically-loaded Single Edge notch Tension (ESE(T)) specimens made of API 5L X65 Grade steel in inert and corrosive environments (2.0% and 3.5% NaCl). The experiments were carried out under constant amplitude cyclic loading with a stress ratio of 0.1 and 5.0 Hz frequency (inert environment), 0.5 Hz frequency (corrosive environment). Crack growth rate (da/dN) and stress intensity factor range (𝚫K) values were evaluated at incremental values of loading cycle and crack length. About 70 to 75% of the data has been used for training and the remaining for validation of the models. It is observed that the predicted SIF range is in good agreement with the corresponding experimental observations. Further, the performance of the models was assessed with several statistical parameters, namely, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Efficiency (E), Root Mean Square Error to Observation's Standard Deviation Ratio (RSR), Normalized Mean Bias Error (NMBE), Performance Index (ρ) and Variance Account Factor (VAF).

PEMFC 냉각 시스템의 물부식 방지에 관한 연구 (Study on Corrosion Problems in PEMFC Cooling System)

  • 박광진;정재화;김정현;배중면
    • 대한기계학회논문집A
    • /
    • 제31권12호
    • /
    • pp.1188-1193
    • /
    • 2007
  • This study focuses on the corrosion problems of STS316(stainless steel 316) tube for the cooling system of PEMFC (Proton Exchange Membrane Fuel Cell) operation. Deionized water which is highly corrosive is used especially for cooling agent of PEMFC to eliminate electrical conductivity, The tensile stress analysis was performed to check the change of mechanical strength of cooling line and pH of the water was monitored for the observation of extent of corrosion at simulated PEMFC operating condition. When STS316 tube was exposed to deionized water for 500 hours, substantial cracks were found on the surface and the pH of water was decreased from 6.8 to 5.8. For prevention of corrosion problems, the STS316 was coated by three kinds of fluororesin such as PTFE, FEP and ETFE. Among the coating materials, PTFE was the most protective in corrosive environment and was maintained the mechanical strength. To lower the cost, the same experimental analyses were carried out for iron tubes and the result will be discussed in detail.

Corrosion of Copper in Anoxic Ground Water in the Presence of SRB

  • Carpen, L.;Rajala, P.;Bomberg, M.
    • Corrosion Science and Technology
    • /
    • 제17권4호
    • /
    • pp.147-153
    • /
    • 2018
  • Copper is used in various applications in environments favoring and enabling formation of biofilms by naturally occurring microbes. Copper is also the chosen corrosion barrier for nuclear waste in Finland. The copper canisters should have lifetimes of 100,000 years. Copper is commonly considered to be resistant to corrosion in oxygen-free water. This is an important argument for using copper as a corrosion protection in the planned canisters for spent nuclear-fuel encapsulation. However, microbial biofilm formation on metal surfaces can increase corrosion in various conditions and provide conditions where corrosion would not otherwise occur. Microbes can alter pH and redox potential, excrete corrosion-inducing metabolites, directly or indirectly reduce or oxidize the corrosion products, and form biofilms that create corrosive microenvironments. Microbial metabolites are known to initiate, facilitate, or accelerate general or localized corrosion, galvanic corrosion, and intergranular corrosion, as well as enable stress-corrosion cracking. Sulfate-reducing bacteria (SRB) are present in the repository environment. Sulfide is known to be a corrosive agent for copper. Here we show results from corrosion of copper in anoxic simulated ground water in the presence of SRB enriched from the planned disposal site.

선박 엔진의 실린더 라이너용 합금주철의 부식마멸에 미치는 분위기의 영향 (Effect of Atmosphere on Corrosive Wear of Alloy Cast Iron for Cylinder Liner of Large Ship Engine)

  • 구현호;조연상;조화영;박흥식
    • Tribology and Lubricants
    • /
    • 제28권5호
    • /
    • pp.233-239
    • /
    • 2012
  • The engine of a large ship operates under wet conditions using a fuel such as bunker C oil, which includes sulfur and many impurities. A cylinder liner made of cast iron is very susceptible to damage such as scuffing on the surface. This scuffing can reliably be attributed to the destruction of the oil film and the corrosion wear caused by water and sulfur included in the fuel, along with abrasion impurities and poor lubricants. In this study, a reciprocating friction and wear test was carried out with a cast iron specimen, which was used to simulate an engine cylinder in a corrosive environment. Base-oil and stirred oil containing distilled water, NaCl solution, and dilute sulfuric acid were used as lubricants. The friction surface was analyzed using a microscope and EDAX, and the friction coefficient was measured using a load-cell under each experimental condition. We then attempted to investigate the damage to the cylinder liner using the results.

음극아크증착법으로 합성한 다층박막의 국부부식 기구에 관한 연구 (A Study of Localized Corrosion Mechanisms in the Multilayered Coatings by Cathodic Arc Deposition)

  • 김호건;안승호;이정호;김정구;한전건
    • 한국표면공학회지
    • /
    • 제36권4호
    • /
    • pp.301-306
    • /
    • 2003
  • Multilayered WC-Ti/suv $1-x/Al_{x}$ N coatings were deposited on AISI D2 steel using cathodic arc deposition (CAD) method. These coatings contain structural defects such as pores or droplets. Thus, the substrate is not completely isolated from the corrosive environment. The growth defects (pores, pinholes) in the coatings are detrimental to corrosion resistance of the coatings used in severe corrosion environments. The localized corrosion behavior of the coatings was studied in deaerated 3.5 wt.% NaCl solution using electrochemical techniques (potentiodynamic polarization test) and surface analyses (GDOES, SEM, AES, TEM). The porosity was calculated from the result of potentiodynamic polarization test of the uncoated and coated specimens. The calculated porosity is higher in the $WC-Ti_{0.6}$ $Al_{0.4}$ N than others, which is closely related to the packing factor. The positive effects of greater packing factor act on inhibiting the passage of the corrosive electrolyte to the substrate and lowering the localized corrosion kinetics. From the electrochemical tests and surface analyses, the major corrosion mechanisms can be classified into two basic categories: localized corrosion and galvanic corrosion.

Coating Performance of SiO2 / Epoxy Composites as a Corrosion Protector

  • Rzaij, Dina R.;Ahmed, Nagham Y.;Alhaboubi, Naseer
    • Corrosion Science and Technology
    • /
    • 제21권2호
    • /
    • pp.111-120
    • /
    • 2022
  • To solve the corrosion problem of industrial equipment and other constructions containing metals, corrosion protection can be performed by using coating which provides a barrier between the metal and its environment. Coatings play a significant role in protecting irons and steels in harsh marine and acid environments. This study was conducted to identify an anti-corrosive epoxy coating for carbon steel composite with 0.1, 0.3, and 0.5 wt% concentrations of nanoparticles of SiO2 using the dip-coating method. The electrochemical behavior was analyzed with open circuit potential (OCP) technics and polarization curves (Tafle) in 3.5 wt% NaCl and 5 vol% H2SO4 media. The structure, composition, and morphology were characterized using different analytical techniques such as X-ray Diffraction (XRD), Fourier Transform Infrared spectrum (FT-IR), and Scanning Electron Microscopy (SEM). Results revealed that epoxynano SiO2 coating demonstrated a lower corrosion rate of 2.51 × 10-4 mm/year and the efficiency of corrosion protection was as high as 99.77%. The electrochemical measurement showed that the nano-SiO2 / epoxy coating enhanced the anti-corrosive performance in both NaCl and H2SO4 media.

배전용 FRP 전주 설계 및 성능시험 (Performance Test and Design of Distribution FRP Pole)

  • 한동희;조한구;박기호;송일근;이웅선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.295-298
    • /
    • 2001
  • This paper presents mechanical properties and weatherability of FRP pole used for a distribution line about high strength and good insulation properties. The experiment strength obtained in cantilever beam test are comparable to ES standards. The environmental factors, such as elevated temperatures, high humidity, and corrosive fluids, and ultraviolet(UV) rays, influence on the performance of Polymeric matrix composite.

  • PDF

해수 중에서 STS304강의 프레팅 마멸특성 (Fretting Wear Characteristics of STS304 Steel in Seawater)

  • 김은구;김태형;김석삼
    • Tribology and Lubricants
    • /
    • 제16권4호
    • /
    • pp.302-307
    • /
    • 2000
  • The fretting wear characteristics of STS304 steel in seawater were investigated experimentally. A fretting wear tester was designed to be suitable for this fretting test. This study was focused on the effects due to the combination of normal load, slip amplitude and number of cycles and corrosive environment as the main factors of fretting. The results of this study showed that the wear volume increased abruptly at slip amplitude between 70 $\mu\textrm{m}$∼100 $\mu\textrm{m}$ by fracture of oxide layers but above that slip amplitude the wear volume increased steadily.