• Title/Summary/Keyword: Corrosion weight

Search Result 603, Processing Time 0.021 seconds

Corrosion Protection Effectiveness and Adsorption Performance of Schiff Base-Quinazoline on Mild Steel in HCl Environment

  • Sayyid, Firas F.;Mustafa, Ali M.;Hanoon, Mahdi M.;Shaker, Lina M.;Alamiery, Ahmed A.
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.77-88
    • /
    • 2022
  • Schiff base quinazoline derivative viz., 3-((2-hydroxy-3-methoxybenzylidene)amino)-2-methylquinazolin-4(3H)-one (SB-Q), was synthesized in this study. Its corrosion protection impact on mild steel (MS) in 1 M hydrochloric acid solution was examined by performing weight loss measurements. The protective efficacy of SB-Q on MS in 1 M HCl was investigated based on its concentrations, immersion period, and immersion temperature. SB-Q was found to be an efficient inhibitor for the corrosion of MS. Its inhibition efficiency was improved by increasing the concentration of SB-Q to an optimal concentration of 500 ppm. Its inhibition efficacy was 96.3% at 303K. Experimental findings revealed that its inhibition efficiency was increased with increasing immersion time, but decreased with an increase in temperature. The adsorption of SB-Q molecules was followed the Langmuir adsorption isotherm model. The adsorption of the examined inhibitor molecules on the surface of mild steel was studied by density functional theory (DFT). DFT investigation confirmed weight loss findings.

Development and Application of Coating Weight Control Technology

  • Park, Jin-Hyoung
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.159-163
    • /
    • 2010
  • Precise coating weight control is very important issue on quality and minimizing operating costs on continuous galvanizing line. These days, many steel making companies are having a new understanding of cost importance by rise raw material prices and customer's requirement for cost reduction. Dongbu steel also meets these situations and decided to develop the technologies. Dongbu Steel developed Integrated coating weight control system jointly with Objective Control Ltd. and installed 2CGL and 4CGL. Several technological functions were developed and realized to achieve true hands-off operation and maximum cost benefit by combining model-based preset and dynamic prediction models. We also installed it on 1 CGL on April, 2008. This paper will present the interface, functions and application result of the integrated coating weight control system including Zn saving and coating weight uniformity.

Corrosion Inhibition of Mild Steel in Acidic Medium by Jathropha Curcas Leaves Extract

  • Odusote, Jamiu K.;Ajayi, Olorunfemi M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.81-87
    • /
    • 2013
  • Inhibition of corrosion of mild steel in sulphuric acid by acidic extract of Jatropha Curcas leaves has been studied using weight loss and thermometric measurements. It was found that the leaves extract act as a good corrosion inhibitor for mild steel in all concentrations of the extract. The inhibition action depends on the concentration of the Jatropha Curcas leaves extract in the acid solution. Results for weight loss and thermometric measurements indicate that inhibition efficiency increase with increasing inhibitor concentration. The adsorption of Jatropha curcas leaves extract on the surface of the mild steel specimens obeys Langmuir adsorption isotherm. Based on the results, Jatropha curcas leaves extract is recommended for use in industries as a replacement for toxic chemical inhibitors.

Effect of S-AITA on Mild Steel Corrosion in Acidic Medium

  • Chandrasekaran, V.;Saravanan, J.
    • Corrosion Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.160-167
    • /
    • 2006
  • S-Acetyl Isothiourea Acetate (S-AITA) was synthesized in the laboratory and this influence on the inhibition of corrosion of mild steel in 1.11 N hydrochloric and 1.12 N sulphuric acids was investigated by weight loss and potentiostatic polarization techniques at 303K, 353K and 403K. These results were confirmed by the impedance technique. The inhibition efficiency increased with increase in concentration of inhibitor and decreased with rise in temperature from 303K to 403K. The maximum inhibition efficiency of S-AITA was found to be 99.95% (0.5% of S-AITA) at 303K in sulphuric acid. The adsorption of this compound on the mild steel surface from the acids has been found to obey Temkin's adsorption isotherm. The potentiostatic polarization results revealed that S-AITA was a mixed type inhibitor. Some thermodynamic parameters i.e., activation energy (Ea), free energy of adsorption (${\Delta}G_{ads}$), enthalpy of adsorption (${\Delta}H$) and entropy of adsorption (${\Delta}S$) were also calculated from weight loss data.

A Study on the behaviour of Cavitation erosion and lubricating Oils and the influence of Corrosion on Slide Bearing Metals for Internal combustion Engine (내연기관용 슬라이드 베어링재의 케비테이션 침식거동과 부식영향 및 윤할유의 거동에 관한 연구)

  • Lee, Jin-Yeol;Im, U-Jo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.2
    • /
    • pp.171-183
    • /
    • 1992
  • In this paper, the behaviour of cavitation erosion, influence of corrosion and corrosion control on slide bearing metals for internal combustion engine were investigated, and this experiment was done by the vibratory cavitation erosion tester. The main results obtained are as follows: 1. With decreasing the space between horn and specimen, the weight loss and its rate increased step by step. But the weight loss and its rate of 0.2mm space decreased conversely more than that of 0.4mm space at early stage. 2. The weight loss and its rate with change of pH were appeared to the order of pH2>pH12>pH7>pH4. And the weight loss and its rate at pH 4 decreased at best. 3. The weight loss and its rate by cavitation erosion for bearing metals were shown to the order of W.M7>W.M1>K.M4. 4. There appeared mainly small pit hole at pH2, and appeared the pit of netting thread type at pH12 by the results of the damaged surfaces at pH2 and pH12 environments that were sensitive to cavitation erosion. 5. With increasing the viscosity of lubricating oil, the weight loss rate by cavitation erosion became dull at the space below 0.5mm. 6. The protective efficiency of cavitation erosion-corrosion is superior inhibitor of chormate(25 ppm) to cathodic protection.

  • PDF

Effect of Welding Thermal Cycle on Microstructure and Pitting Corrosion Property of Multi-pass Weldment of Super-duplex Stainless Steel (슈퍼 듀플렉스 스테인리스강 다층용접부의 미세조직 및 공식(Pitting Corrosion)에 미치는 용접열사이클의 영향)

  • Nam, Seong-Kil;Park, Se-Jin;Na, Hye-Sung;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.18-25
    • /
    • 2010
  • Super-duplex stainless steels (SDSS) have a good balance of mechanical property and corrosion resistance when they consist of approximately equal amount of austenite and ferrite. The SDSS needs to avoid the detrimental phases such as sigma(${\sigma}$), chi(${\chi}$), secondary austenite(${\gamma}2$), chromium carbide & nitride and to maintain the ratio of ferrite & austenite phase as well known. However, the effects of the subsequent weld thermal cycle were seldom experimentally studied on the micro-structural variation of weldment & pitting corrosion property. Therefore, the present study investigated the effect of the subsequent thermal cycle on the change of weld microstructure and pitting corrosion property at $40^{\circ}C$. The thermal history of root side was measured experimentally and the change of microstructure of weld root & the weight loss by pitting corrosion test were observed as a function of the thermal cycle of each weld layer. The ferrite contents of root weld were reduced with the subsequent weld thermal cycles. The pitting corrosion was occurred in the weld root region in case of the all pitted specimen & in the middle weld layer in some cases. And the weight loss by pitting corrosion was increased in proportional to the time exposed at high temperature of the root weld and also by the decrease of ferrite content. The subsequent weld thermal cycles destroy the phase balance of ferrite & austenite at the root weld. Conclusively, It is thought that as the more subsequent welds were added, the more the phase balance of ferrite & austenite was deviated from equality, therefore the pitting corrosion property was deteriorated by galvanic effect of the two phases and the increase of 2nd phases & grain boundary energy.

Effects of Surface Roughness on Atmospheric Corrosion of Galvanized Steel Sheets (아연도금 강판의 대기부식에 미치는 표면 거칠기의 영향)

  • 안진호;강성군;장세기
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.6
    • /
    • pp.307-316
    • /
    • 1998
  • The effects of surface roughness on chromate conversion coating and the corrosion behavior of galvanized steel sheets were investigated. Surface roughness was differently given to the galvanized steel sheets tested and these were then chromated. Accelerated corrosion test was conducted under the condition of $30^{\circ}C$, 90%RH with flowing 200ppm $SO_2$ gas. The galvanized steels were also exposed to urban environment for 5 weeks. The corrosion rates were measured by weight gain method. The distribution of chromate film and corrosion product on the coating were examined which SEM/EDS. The chromate film formed preferentially at the convex sites rather than at the concave sites on the surface. The corrosion products were found at the concave sites where the chromate film formed rarely. The corrosion product on the coating were found at the concave sites where the chromate film formed rarely. The corrosion rates increased slightly with the surface roughness in accelerated corrosion test but significantly in field test.

  • PDF

Effect of Chemical Passivation Treatment and Flow on the Corrosion of 304 Stainless Steel in Hydrochloric Acid Solution

  • Zhao, Jie;Cheng, Cong Qian;Cao, Tie Shan
    • Corrosion Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.273-279
    • /
    • 2015
  • Effects of passive film quality by chemical passivation and solution flow on the corrosion behavior of 304 stainless steel in HCl solution were investigated using a coloration indicator, and by corrosion weight loss, electrochemical polarization and element dissolution measurements. A high redness degree suggests a low passive-film integrity for 304 stainless steel following air exposure, while the minimum redness degree for the samples after chemical passivation suggests a high passive-film integrity. In the static condition, samples subjected to air exposure exhibited a high corrosion rate and preferential dissolution of Fe. Chemical passivation inhibited the corrosion rate due to the intrinsically high structural integrity of the passive film and high concentrations of Cr-rich oxides and hydroxide. Solution flow accelerated corrosion by promoting both the anodic dissolution reaction and the cathodic reaction. Solution flow also altered the preferential dissolution to fast uniform dissolution of metal elements.

Examination on Required Cover Depth to Prevent Reinforcement Corrosion Risk in Concrete

  • Yoon, In-Seok
    • Corrosion Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.157-164
    • /
    • 2012
  • In first experiment series, this paper is devoted for examining progress of reinforcement corrosion due to carbonation in concrete and to quantify uncarbonation depth to protect reinforcement from corroding. The tolerance of cover depth should be considered in order to prevent carbonation-induced corrosion. From the relationship between the weight loss of reinforcement and corrosion current density for a given time, therefore, the tolerance of cover depth to prevent carbonation-induced corrosion is computed. It is observed that corrosion occurs when the distance between carbonation front and reinforcement surface (uncarbonated depth) is smaller than 5 mm.As a secondary purpose of this study, it is investigated to examine the interaction between carbonation and chloride penetration and their effects on concrete. This was examined experimentally under various boundary conditions. For concrete under the double condition, the risk of deterioration due to carbonation was not severe. However, it was found that the carbonation of concrete could significantly accelerate chloride penetration. As a result, chloride penetration in combination with carbonation is a serious cause of deterioration of concrete.

Effect of Mo, Ti, Nb on the hot salt corrosion behavior of ferritic stainless steels for automotive exhaust system (자동차배기관용 페라이트계 스테인레스강의 고온염부식에 미치는 Mo, Ti, Nb 원소의 영향)

  • 김수정;안용식
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.48-55
    • /
    • 1997
  • The steel for automotive exhaust system needs a good corrosion resistance at the atmosphere of high temperature NaCl. Effect of the alloying elements Me, Ti, Nb on the NaCl induced hot corrosion behavior was investigated at the temperatures between 55$0^{\circ}C$ and 75$0^{\circ}C$ for 18Cr ferritic stainless steels. The weight loss by corrosion has increased linearly with corrosion cycle time, and the corrosion rate has accelerated at higher temperature. The alloying of Mo significantly improved corrosion resistance of the steel and the effect was more pronounced at higher temperature. The addition of alloying elements Ti, Nb have also shown improved corrosion resistance by formation of Ti(C,N) or Nb(C, N) precipitates.

  • PDF